• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Xingxin, HE Minggao, SHI Wencheng, GUO Liqun. Calculation of pressures on after incomplete arch cutterhead removal in earth-rock composite formation by in-situ junction method for shield tunneling[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2652-2660. DOI: 10.11779/CJGE20231228
Citation: CHEN Xingxin, HE Minggao, SHI Wencheng, GUO Liqun. Calculation of pressures on after incomplete arch cutterhead removal in earth-rock composite formation by in-situ junction method for shield tunneling[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2652-2660. DOI: 10.11779/CJGE20231228

Calculation of pressures on after incomplete arch cutterhead removal in earth-rock composite formation by in-situ junction method for shield tunneling

More Information
  • Received Date: December 14, 2023
  • Available Online: June 18, 2024
  • It is the key to ensure the stability of the free face after the cutterhead is disassembled by using the shield junction method of "junction, shell abandoning and disintegration in opposite tunneling". For a shield tunneling project in Qingdao, a numerical model is established by COMSOL Multiphysics. Based on the streamline deflection of the principal stress vector and change of stresses in various directions, the range of the main arch ring of the pressure arch in the junction section of the tunneling is determined, and the formula for calculating the overlying pressures on the surrounding rock is derived by considering the incomplete deflection of the major principal stress and the incomplete call of the internal friction angle. The results show that the major principal stress along the tunnel axis does not arch along the vector streamline, but the arching effects along the tunnel axis are more significant. Due to the loose area at the vault, the inner boundary does not coincide with the upper edge of the tunnel, but is a certain height away from the vault. The boundaries at both sides of the pressure arch are inclined upward, and the main arch ring is generally in the shape of a basin. By comparing the actual deflection of the major principal stress of incomplete arch, it is found that the arc, linear and parabolic arch traces all overestimate the deflection angle of the principal stress, resulting in a large lateral pressure coefficient, and it is unsafe to calculate the overlying earth pressures, while the internal friction angle increases with the decrease of the distance from the arch vault. Through the numerical calculation and theoretical analysis, it is concluded that under the action of pressure arch, the loads on the free surface drop to 1/3 of the initial confining pressures.
  • [1]
    石荣剑, 岳丰田, 张勇, 等. 盾构地中对接冻结加固模型试验(Ⅰ): 冻结过程中地层冻结温度场的分布特征[J]. 岩土力学, 2017, 38(2): 368-376.

    SHI Rongjian, YUE Fengtian, ZHANG Yong, et al. Model test on freezing reinforcement for shield junction Part 1: distribution characteristics of temperature field in soil stratum during freezing process[J]. Rock and Soil Mechanics, 2017, 38(2): 368-376. (in Chinese)
    [2]
    朱伟, 钱勇进, 王璐, 等. 长距离盾构隧道掘进的主要问题及发展趋势[J]. 河海大学学报(自然科学版), 2023, 51(1): 138-149.

    ZHU Wei, QIAN Yongjin, WANG Lu, et al. Main problems and development trends of long-distance shield tunneling[J]. Journal of Hohai University (Natural Sciences), 2023, 51(1): 138-149. (in Chinese)
    [3]
    洪开荣, 杜闯东, 王坤. 广深港高速铁路狮子洋水下盾构隧道修建技术[J]. 中国工程科学, 2009, 11(7): 53-58.

    HONG Kairong, DU Chuangdong, WANG Kun. Shield tunneling technology of Shiziyang subaqueous tunnel of Guangzhou-Shenzhen-Hongkong high-speed railway[J]. Engineering Sciences, 2009, 11(7): 53-58. (in Chinese)
    [4]
    傅鹤林, 张加兵, 陈伟, 等. 深埋圆形毛洞隧道围岩压力拱范围研究[J]. 湖南大学学报(自然科学版), 2018, 45(7): 117-124.

    FU Helin, ZHANG Jiabing, CHEN Wei, et al. Research on pressure arch range of surrounding rock in deep unlined circular tunnel[J]. Journal of Hunan University (Natural Sciences), 2018, 45(7): 117-124. (in Chinese)
    [5]
    王家全, 陈家明, 林志南, 等. 基于三角形滑移面的地基松动土压力研究[J]. 岩土力学, 2023, 44(3): 697-707.

    WANG Jiaquan, CHEN Jiaming, LIN Zhinan, et al. Study on loose soil pressure based on triangular slip surfaces[J]. Rock and Soil Mechanics, 2023, 44(3): 697-707. (in Chinese)
    [6]
    李奎. 水平层状隧道围岩压力拱理论研究[D]. 成都: 西南交通大学, 2010.

    LI Kui. Pressure Arch Theory Study of Horizontal Bedded Tunnel Surrounding Rock[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese)
    [7]
    KONG X X, LIU Q S, PAN Y C, et al. Stress redistribution and formation of the pressure arch above underground excavation in rock mass[J]. European Journal of Environmental and Civil Engineering, 2021, 25(4): 722-736. doi: 10.1080/19648189.2018.1541824
    [8]
    CHEN R P, LI J, KONG L G, et al. Experimental study on face instability of shield tunnel in sand[J]. Tunnelling and Underground Space Technology, 2013, 33: 12-21. doi: 10.1016/j.tust.2012.08.001
    [9]
    耿哲, 袁大军, 金大龙, 等. 考虑松动区渐进破坏的隧道松动土压力研究[J]. 岩土工程学报, 2023, 45(8): 1754-1762. doi: 10.11779/CJGE20220684

    GENG Zhe, YUAN Dajun, JIN Dalong, et al. Loose earth pressure of tunnels considering progressive failure of loosen zone[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1754-1762. (in Chinese) doi: 10.11779/CJGE20220684
    [10]
    张宇, 陶连金, 刘军, 等. 考虑主应力偏转和土拱效应的干砂盾构隧道掌子面极限支护力计算方法研究[J]. 岩土工程学报, 2023, 45(3): 530-540. doi: 10.11779/CJGE20211349

    ZHANG Yu, TAO Lianjin, LIU Jun, et al. Method for calculating limit support pressure of face of shield tunnels considering principal stress axis rotation and soil arching effects in dry sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 530-540. (in Chinese) doi: 10.11779/CJGE20211349
    [11]
    叶飞, 樊康佳, 宋京, 等. 基于不完全拱效应的隧道预处理机制与计算方法[J]. 岩石力学与工程学报, 2017, 36(6): 1469-1478.

    YE Fei, FAN Kangjia, SONG Jing, et al. The pretreatment mechanism of tunnels and its calculation method based on the incomplete arch effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1469-1478. (in Chinese)
    [12]
    CHEN R P, TANG L J, YIN X S, et al. An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils[J]. Acta Geotechnica, 2015, 10(5): 683-692. doi: 10.1007/s11440-014-0304-5
    [13]
    徐长节, 梁禄钜, 陈其志, 等. 考虑松动区内应力分布形式的松动土压力研究[J]. 岩土力学, 2018, 39(6): 1927-1934.

    XU Changjie, LIANG Luju, CHEN Qizhi, et al. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone[J]. Rock and Soil Mechanics, 2018, 39(6): 1927-1934. (in Chinese)
    [14]
    崔蓬勃, 朱永全, 刘勇, 等. 考虑土拱发挥过程的非饱和砂土盾构隧道极限支护力计算方法研究[J]. 岩土工程学报, 2020, 42(5): 873-881. doi: 10.11779/CJGE202005009

    CUI Pengbo, ZHU Yongquan, LIU Yong, et al. Calculation of ultimate supporting forces of shield tunnels in unsaturated sandy soils considering soil arching effects[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 873-881. (in Chinese) doi: 10.11779/CJGE202005009
    [15]
    黄大维, 陈后宏, 徐长节, 等. 联络通道施工盾构机接收对已建盾构隧道影响试验研究[J]. 岩土工程学报, 2024, 46(4): 784-793. doi: 10.11779/CJGE20221455

    HUANG Dawei, CHEN Houhong, XU Changjie, et al. Experimental study on influences of shield machine reception on existing shield tunnels during construction of connecting channels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 784-793. (in Chinese) doi: 10.11779/CJGE20221455
    [16]
    SHI J K, WANG F, ZHANG D M, et al. Refined 3D modelling of spatial-temporal distribution of excess pore water pressure induced by large diameter slurry shield tunneling[J]. Computers and Geotechnics, 2021, 137: 104312. doi: 10.1016/j.compgeo.2021.104312
    [17]
    ZHANG H F, ZHANG P, ZHOU W, et al. A new model to predict soil pressure acting on deep burial jacked pipes[J]. Tunnelling and Underground Space Technology, 2016, 60: 183-196. doi: 10.1016/j.tust.2016.09.005
    [18]
    吕伟华, 缪林昌, 王非. 基于不完全土拱效应的土工格栅加固机制与设计方法[J]. 岩石力学与工程学报, 2012, 31(3): 632-639.

    LU Weihua, MIAO Linchang, WANG Fei. Mechanism of geogrid reinforcement based on partially developed soil arch effect and design method[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 632-639. (in Chinese)
  • Cited by

    Periodical cited type(37)

    1. 张远庆,陈勇,王世梅,王力. 岸坡渗流潜蚀模型试验系统变革研究. 三峡大学学报(自然科学版). 2025(02): 48-54 .
    2. 程瑞林,汪泾周,范钦煜,湛正刚,周伟,马刚. 高心墙堆石坝材料本构模型计算的适用性研究. 中南大学学报(自然科学版). 2024(01): 219-229 .
    3. 张丹,邱子源,金伟,张梓航,罗玉龙. 粗粒土渗透及渗透变形试验缩尺方法研究. 岩土力学. 2024(01): 164-172 .
    4. 崔熙灿,张凌凯,王建祥. 缩尺效应对砂砾石料力学特性及其本构模型的影响. 浙江大学学报(工学版). 2024(06): 1198-1208 .
    5. 邹德高,宁凡伟,刘京茂,崔更尧,孔宪京. 基于超大型三轴仪的堆石料动力特性缩尺效应研究. 水利学报. 2024(05): 528-536 .
    6. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 .
    7. 刘赛朝,瞿常杰,石北啸. 堆石料缩尺效应试验及其数值模拟. 江西水利科技. 2024(05): 332-336 .
    8. 邹德高,刘京茂,宁凡伟,孔宪京,崔更尧,金伟,湛正刚. 基于超大型三轴试验和原型监测的堆石料模型参数缩尺效应修正. 岩土工程学报. 2024(12): 2476-2483 . 本站查看
    9. 陈洪春,王珊,段玉昌,王柳江,梁睿斌,徐祥,沈超敏. 基于现场载荷试验的压实土石填筑料变形参数反演. 三峡大学学报(自然科学版). 2023(01): 22-27 .
    10. 蒋明杰,朱俊高,张小勇,梅国雄,赵辰洋. 缩尺效应对粗颗粒土静止侧压力系数影响规律试验. 工程科学与技术. 2023(02): 259-266 .
    11. 蒋明杰,吉恩跃,王天成,栗书亚,朱俊高,梅国雄. 粗粒土抗剪强度的缩尺效应规律试验研究. 岩土工程学报. 2023(04): 855-861 . 本站查看
    12. 孙向军,潘家军,卢一为,左永振,周跃峰,王俊鹏. 级配和密度组合对粗粒土强度特性的影响. 长江科学院院报. 2023(08): 133-138 .
    13. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 .
    14. 潘家军,孙向军. 粗颗粒土缩尺方法及缩尺效应研究进展. 长江科学院院报. 2023(11): 1-8 .
    15. 吴鑫磊,石北啸,刘赛朝,徐卫卫,常伟坤. 考虑颗粒破碎的堆石料大型三轴试验. 科学技术与工程. 2022(02): 749-756 .
    16. 徐琨,杨启贵,周伟,马刚,黄泉水. 基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究. 中国农村水利水电. 2022(03): 200-206+211 .
    17. 吴平,万燎榕,夏万求,高从容. 考虑级配影响的粗粒料三轴剪切破碎特性分析. 水电能源科学. 2022(05): 156-159+155 .
    18. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
    19. 邹德高,刘京茂,孔宪京,陈楷,屈永倩,宁凡伟,龚瑾. 强震作用下特高土石坝多耦合体系损伤演化机理及安全评价准则. 岩土工程学报. 2022(07): 1329-1340 . 本站查看
    20. 徐靖,叶华洋,朱晟. 粗粒料颗粒破碎三维离散元模型及其在密度桶试验中的应用. 河海大学学报(自然科学版). 2022(04): 127-134 .
    21. 汤洪洁,杨正权,赵宇飞,田忠勇. 阿尔塔什高面板坝变形控制与安全保障关键技术研究. 水利规划与设计. 2022(12): 26-32 .
    22. 宁凡伟,孔宪京,邹德高,刘京茂,余翔,周晨光. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响. 岩土工程学报. 2021(02): 263-270 . 本站查看
    23. 刘赛朝,吴鑫磊,徐卫卫,石北啸. 堆石料缩尺效应试验研究. 人民长江. 2021(01): 173-176+217 .
    24. 姜景山,左永振,程展林,韦有信,张超,夏威夷. 考虑密度影响的粗粒料剪胀模型. 人民长江. 2021(04): 182-186 .
    25. 潘生贵,陈少峰,杨辉,郑有强,李传懿. 海岸带强风化花岗岩强度及应力应变特性的尺寸效应研究. 工程勘察. 2021(05): 6-10 .
    26. 毛航宇,刘斯宏,沈超敏,王柳江,初文婷. 温、湿控制粗粒料大型三轴仪的研制及应用. 岩石力学与工程学报. 2021(06): 1258-1266 .
    27. 周泳峰,王俊杰,王爱国,杨希. 缩尺效应对堆石料颗粒破碎特性的影响. 水电能源科学. 2021(08): 165-168+65 .
    28. 王家全,畅振超,王晴,唐毅. 不同动应力比下加筋前后砾性土的动三轴试验分析. 水力发电. 2020(04): 120-125 .
    29. 李传懿,陈志波. 海底强风化花岗岩K_0固结三轴试验尺寸效应. 中南大学学报(自然科学版). 2020(06): 1646-1653 .
    30. 邵晓泉,迟世春. 堆石料变形参数的粒径尺寸相关性研究. 岩土工程学报. 2020(09): 1715-1722 . 本站查看
    31. 李学丰,李瑞杰,张军辉,王奇. 堆石料三维强度特性. 中国公路学报. 2020(09): 54-62 .
    32. 吴鑫磊,徐卫卫,刘赛朝,常伟坤,石北啸. 粗粒料缩尺效应的试验研究进展. 水利科学与寒区工程. 2020(03): 1-7 .
    33. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
    34. 陈之祥,邵龙潭,李顺群,郭晓霞,田筱剑. 三维真土压力盒的设计与应力参数的计算. 岩土工程学报. 2020(11): 2138-2145 . 本站查看
    35. 郭万里,朱俊高,王俊杰,鲁洋. 粗粒土静力特性及室内测试技术研究进展. 岩石力学与工程学报. 2020(S2): 3570-3585 .
    36. 武利强,叶飞,林万青. 堆石料力学特性缩尺效应试验研究. 岩土工程学报. 2020(S2): 141-145 . 本站查看
    37. 任秋兵,李明超,杜胜利,刘承照. 筑坝堆石料抗剪强度间接测定模型与实用计算公式研究. 水利学报. 2019(10): 1200-1213 .

    Other cited types(25)

Catalog

    Article views PDF downloads Cited by(62)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return