Citation: | LIU Songyong, CUI Song, GU Congcong. Experimental study on characteristics of rock fracturing by high-pressure foam[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 125-134. DOI: 10.11779/CJGE20231216 |
[1] |
何满潮, 郭鹏飞, 张晓虎, 等. 基于双向聚能拉张爆破理论的巷道顶板定向预裂[J]. 爆炸与冲击, 2018, 38(4): 795-803.
HE Manchao, GUO Pengfei, ZHANG Xiaohu, et al. Directional pre-splitting of roadway roof based on the theory of bilateral cumulative tensile explosion[J]. Explosion and Shock Waves, 2018, 38(4): 795-803. (in Chinese)
|
[2] |
孙鹏昌, 卢文波, 雷振, 等. 单薄山体岩质高边坡爆破振动响应分析及安全控制[J]. 岩土工程学报, 2021, 43(5): 877-885. doi: 10.11779/CJGE202105011
SUN Pengchang, LU Wenbo, LEI Zhen, et al. Blasting vibration response and control of high rock slopes of thin mountain[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 877-885. (in Chinese) doi: 10.11779/CJGE202105011
|
[3] |
佘磊, 张社荣, 和孙文, 等. 基于密实核理论的TBM盘形滚刀磨损预测模型研究[J]. 岩土工程学报, 2022, 44(5): 970-978. doi: 10.11779/CJGE202205021
SHE Lei, ZHANG Sherong, HE Sunwen, et al. Prediction model for TBM disc cutter wear based on dense core theory[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 970-978. (in Chinese) doi: 10.11779/CJGE202205021
|
[4] |
YANG L Y, WANG Q C, XU L N, et al. Fracture path of cracks emigrating from two circular holes under blasting load[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102559. doi: 10.1016/j.tafmec.2020.102559
|
[5] |
周盛涛, 罗学东, 蒋楠, 等. 二氧化碳相变致裂技术研究进展与展望[J]. 工程科学学报, 2021, 43(7): 883-893.
ZHOU Shengtao, LUO Xuedong, JIANG Nan, et al. A review on fracturing technique with carbon dioxide phase transition[J]. Chinese Journal of Engineering, 2021, 43(7): 883-893. (in Chinese)
|
[6] |
何志坚, 张诗童, 蒋楠, 等. CO2相变致裂应力波传播及影响规律试验研究[J]. 爆破, 2022, 39(3): 133-138.
HE Zhijian, ZHANG Shitong, JIANG Nan, et al. Experimental investigation on propagation and influence law of stress wave induced by CO2 phase transition for rock fracturing[J]. Blasting, 2022, 39(3): 133-138. (in Chinese)
|
[7] |
ZHANG Y N, DENG J R, KE B, et al. Experimental study on explosion pressure and rock breaking characteristics under liquid carbon dioxide blasting[J]. Advances in Civil Engineering, 2018, 2018: 7840125. doi: 10.1155/2018/7840125
|
[8] |
ZHANG Y N, DENG J R, DENG H W, et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting[J]. International Journal of Damage Mechanics, 2019, 28(7): 1038-1052. doi: 10.1177/1056789518807532
|
[9] |
周长林, 彭欢, 桑宇, 等. 页岩气CO2泡沫压裂技术[J]. 天然气工业, 2016, 36(10): 70-76.
ZHOU Changlin, PENG Huan, SANG Yu, et al. CO2 foam fracturing technology in shale gas development[J]. Natural Gas Industry, 2016, 36(10): 70-76. (in Chinese)
|
[10] |
QAJAR A, XUE Z, WORTHEN A J, et al. Modeling fracture propagation and cleanup for dry nanoparticle-stabilized-foam fracturing fluids[J]. Journal of Petroleum Science and Engineering, 2016, 146: 210-221. doi: 10.1016/j.petrol.2016.04.008
|
[11] |
WANNIARACHCHI W A M, RANJITH P G, PERERA M S A, et al. Investigation of effects of fracturing fluid on hydraulic fracturing and fracture permeability of reservoir rocks: an experimental study using water and foam fracturing[J]. Engineering Fracture Mechanics, 2018, 194: 117-135. doi: 10.1016/j.engfracmech.2018.03.009
|
[12] |
GU M, MOHANTY K K. Effect of foam quality on effectiveness of hydraulic fracturing in shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 273-285. doi: 10.1016/j.ijrmms.2014.05.013
|
[13] |
PICKERING R G B. Controlled foam injection: a new and innovative non-explosive rockbreaking technology[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2017, 117(3): 237-243. doi: 10.17159/2411-9717/2017/v117n3a5
|
[14] |
刘送永, 李志强, 谢奇志. 高压泡沫涨裂装置结构参数设计及特性分析[J]. 机械工程学报, 2021, 57(3): 197-206.
LIU Songyong, LI Zhiqiang, XIE Qizhi. Structural parameter design and performance analysis of high pressure foam fracturing device[J]. Journal of Mechanical Engineering, 2021, 57(3): 197-206. (in Chinese)
|
[15] |
XU P, YANG R S, ZUO J J, et al. Research progress of the fundamental theory and technology of rock blasting[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 705-716. doi: 10.1007/s12613-022-2464-x
|
[16] |
邵鲁英. 岩石压裂钻孔径轴向时空起裂扩展规律研究[D]. 徐州: 中国矿业大学, 2020.
SHAO Luying. Study on the Law of Axial Space-Time Crack Initiation and Propagation of Rock Fracturing Drill Hole Diameter[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)
|
[17] |
LIU Z H, MA Z K, LIU K, et al. Coupled CEL-FDEM modeling of rock failure induced by high-pressure water jet[J]. Engineering Fracture Mechanics, 2023, 277: 108958. doi: 10.1016/j.engfracmech.2022.108958
|
[18] |
赵旭. 高压氮气冲击致裂煤岩体裂隙发育规律研究[D]. 徐州: 中国矿业大学, 2017.
ZHAO Xu. Study on Fracture Development Law of Coal and Rock Mass Caused by High Pressure Nitrogen Impact[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese)
|
[19] |
顾大钊. 模拟岩石机械破碎的相似材料的选择及其配比[J]. 中国矿业学院学报, 1988, 17(3): 36-40.
GU Dazhao. A study of analogous materials for simulating mechanical rock breaking and the proportion of their components[J]. Journal of China University of Mining & Technology, 1988, 17(3): 36-40. (in Chinese)
|
[20] |
XIE L X, ZHANG Q B, GU J C, et al. Damage evolution mechanism in production blasting excavation under different stress fields[J]. Simulation Modelling Practice and Theory, 2019, 97: 101969. doi: 10.1016/j.simpat.2019.101969
|
[21] |
QIU P, YUE Z W, JU Y, et al. Characterizing dynamic crack-tip stress distribution and evolution under blast gases and reflected stress waves by caustics method[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102632. doi: 10.1016/j.tafmec.2020.102632
|
[22] |
闫浩. 超临界CO2压裂煤体分阶段致裂机理及裂缝扩展规律[D]. 徐州: 中国矿业大学, 2020.
YAN Hao. Staged Cracking Mechanism and Crack Propagation Law of Supercritical CO2 Fracturing Coal Mass[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)
|