• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
WU Min, HUANG Yinghao, DONG Shijun, ZHANG Rongjun. Effects of polymer flocculant on dredged sediment by plate and frame filter press dewatering technology and its influence mechanism[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 470-476. DOI: 10.11779/CJGE20231212
Citation: WU Min, HUANG Yinghao, DONG Shijun, ZHANG Rongjun. Effects of polymer flocculant on dredged sediment by plate and frame filter press dewatering technology and its influence mechanism[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 470-476. DOI: 10.11779/CJGE20231212

Effects of polymer flocculant on dredged sediment by plate and frame filter press dewatering technology and its influence mechanism

More Information
  • Received Date: December 10, 2023
  • Available Online: July 15, 2024
  • The plate and frame filter press dewatering technology has been gradually popularized and applied in treatment projects of dredged sediment, but there are problems such as poor applicability of flocculant selection and unclear mechanism. In response to the phenomenon, two typical polymer flocculants are selected. One is the synthetic polyacrylamide flocculant with more applications in engineering, and the other is the natural environment-friendly flocculant chitosan. Through the measuring cylinder settling column experiment, the variation rules of settlement and dewatering of the dredged sediment are studied under two flocculants of anionic polyacrylamide (APAM) and chitosan with different dosages and the optimal dosage of flocculants is obtained. The settling volume of dredged sediment (after 7 days) under the optimal dosage is reduced by 25.9% and 32.4% respectively compared with the original sediment. On this basis, the combined flocculation and plate and frame filter press dewatering tests are carried out. The results show that the addition of APAM has a greater impact on the dewatering of the dredged sediment at the filtration stage. The dewatering effects of the chitosan-added sediment are better at the pressing stage. During the process of plate and frame filter press, the filtrate of the mud cake with APAM and chitosan flocculants increase by 17.23% and 24.5%, respectively, compared with those of the original sediment. The influence mechanism of APAM and chitosan on the dewatering effects of the dredged sediment by the plate and frame filter press is further investigated by using the particle size analysis, XRD and SEM tests. The particle analysis tests show that after the addition of 0.6‰ APAM and 1.8‰ chitosan, the small particles in the dredged sediment are bridged into large particle flocs by flocculation, and the lengths of d90 increase from 10.97 μm to 29.48 and 29.63 μm, respectively.
  • [1]
    黄英豪, 戴济群, 徐锴. 新拌固化淤泥的流动性和黏滞性试验研究[J]. 岩土工程学报, 2022, 44(2): 235-244. doi: 10.11779/CJGE202202004

    HUANG Yinghao, DAI Jiqun, XU Kai. Flowability and viscosity of freshly solidified dredged materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 235-244. (in Chinese) doi: 10.11779/CJGE202202004
    [2]
    朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术" 的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054.

    ZHU Wei, MIN Fanlu, LÜ Yiyan, et al. Subject of "mud science and application technology" and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese)
    [3]
    包建平, 朱伟, 闵佳华. 中小河道治理中的清淤及淤泥处理技术[J]. 水资源保护, 2015, 31(1): 56-62, 68.

    BAO Jianping, ZHU Wei, MIN Jiahua. Technology of dredging and sludge treatment in small and medium-sized river regulation[J]. Water Resources Protection, 2015, 31(1): 56-62, 68. (in Chinese)
    [4]
    郑爱荣, 朱洪满. 絮凝加速吹填土沉积的试验研究[J]. 岩土工程学报, 2017, 39(增刊2): 145-148. doi: 10.11779/CJGE2017S2036

    ZHENG Airong, ZHU Hongman. Experimental study on flocculation-accelerated deposition of dredger fill[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 145-148. (in Chinese) doi: 10.11779/CJGE2017S2036
    [5]
    徐桂中, 杨瑞敏, 丁建文, 等. 高含水率疏浚泥堆场颗粒分选规律现场试验研究[J]. 东南大学学报(自然科学版), 2013, 43(3): 634-638.

    XU Guizhong, YANG Ruimin, DING Jianwen, et al. Field experiment on grain sorting behaviors in reclaimed land of dredged slurries with high water content[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(3): 634-638. (in Chinese)
    [6]
    汪顺才, 张春雷, 黄英豪, 等. 堆场疏浚淤泥含水率分布规律调查研究[J]. 岩土力学, 2010, 31(9): 2823-2828. doi: 10.3969/j.issn.1000-7598.2010.09.022

    WANG Shuncai, ZHANG Chunlei, HUANG Yinghao, et al. Study of diversification of water contents in dredged sediment storage yard[J]. Rock and Soil Mechanics, 2010, 31(9): 2823-2828. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.09.022
    [7]
    张春雷, 管非凡, 李磊, 等. 中国疏浚淤泥的处理处置及资源化利用进展[J]. 环境工程, 2014, 32(12): 95-99.

    ZHANG Chunlei, GUAN Feifan, LI Lei, et al. The progress in the reutillzation treatment and disposal of dredged sediments in China[J]. Environmental Engineering, 2014, 32(12): 95-99. (in Chinese)
    [8]
    崔岩, 侯豪, 吴思麟, 等. 淤泥板框压滤、脱水阶段特征及简化评价指标研究[J]. 环境科技, 2019, 32(4): 1-5.

    CUI Yan, HOU Hao, WU Silin, et al. Study on two-stage characteristics of mud dewatering by plate-frame pressure filtration and simplified evaluation index[J]. Environmental Science and Technology, 2019, 32(4): 1-5. (in Chinese)
    [9]
    詹良通, 尹昭宇, 陈萍, 等. 洗砂泥浆压滤脱水性能及快速检测方法[J]. 岩土力学, 2022, 43(3): 769-776, 856.

    ZHAN Liangtong, YIN Zhaoyu, CHEN Ping, et al. Pressure filtration dewatering performance of sand-washing slurry and rapid test method[J]. Rock and Soil Mechanics, 2022, 43(3): 769-776, 856. (in Chinese)
    [10]
    章荣军, 董超强, 郑俊杰, 等. 絮凝剂和缓凝剂对水泥固化疏浚淤泥浆效率的影响研究[J]. 岩土工程学报, 2019, 41(10): 1928-1935. doi: 10.11779/CJGE201910018

    ZHANG Rongjun, DONG Chaoqiang, ZHENG Junjie, et al. Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1928-1935. (in Chinese) doi: 10.11779/CJGE201910018
    [11]
    武亚军, 陆逸天, 骆嘉成, 等. 药剂真空预压法在工程废浆处理中的防淤堵作用[J]. 岩土工程学报, 2017, 39(3): 525-533. doi: 10.11779/CJGE201703017

    WU Yajun, LU Yitian, LUO Jiacheng, et al. Anti-clogging function of vacuum preloading with flocculants in solid-liquid separation of construction waste slurry[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 525-533. (in Chinese) doi: 10.11779/CJGE201703017
    [12]
    李世汩, 张洋, 夏新星, 等. 复合调理对淤泥机械压滤脱水特性的影响机理分析[J]. 长江科学院院报, 2024, 41(4): 29-36.

    LI Shimi, ZHANG Yang, XIA Xinxing, et al. Influence mechanism of composite conditioning of sludge on dehydration performance of mechanical pressure filtration[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(4): 29-36. (in Chinese)
    [13]
    ZHANG J, HU Q, LU J, et al. Study on the effect of chitosan conditioning on sludge dewatering[J]. Water Science and Technology, 2019, 79(3): 501-509. doi: 10.2166/wst.2019.073
    [14]
    LIU F Y, WU W Q, FU H T, et al. Application of flocculation combined with vacuum preloading to reduce river-dredged sludge[J]. Marine Georesources & Geotechnology, 2020, 38(2): 164-173. http://www.xueshufan.com/publication/2912632278
    [15]
    蒲诃夫, 潘友富, DIBANGAR K, 等. 絮凝-水平真空两段式脱水法处理高含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.

    PU Hefu, PAN Youfu, DIBANGAR K, et al. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method[J]. Rock and Soil Mechanics, 2020, 41(5): 1502-1509. (in Chinese)
    [16]
    闫高原, 韦重韬, 宋昱, 等. 基于Ar-SEM及PCAS页岩孔隙结构定量表征[J]. 地球科学, 2018, 43(5): 1602-1610.

    YAN Gaoyuan, WEI Chongtao, SONG Yu, et al. Quantitative characterization of shale pore structure based on Ar-SEM and PCAS[J]. Earth Science, 2018, 43(5): 1602-1610. (in Chinese)
    [17]
    ZHANG W J, WANG H D, LI L Q, et al. Impact of molecular structure and charge property of chitosan based polymers on flocculation conditioning of advanced anaerobically digested sludge for dewaterability improvement[J]. Science of the Total Environment, 2019, 670: 98-109. doi: 10.1016/j.scitotenv.2019.03.156
  • Cited by

    Periodical cited type(13)

    1. 张沛杰,王展亮. 石灰和水泥改良软土力学性能及水稳定性研究. 湖南工程学院学报(自然科学版). 2025(01): 79-87 .
    2. 罗跃春,甘展孜,曾新雄,王宁伟. 珠江口西岸滨海区软土属性分析. 土工基础. 2024(02): 239-242 .
    3. 宋许根. 广州南沙某深厚软土区综合管廊基坑变形破坏分析. 岩石力学与工程学报. 2023(S1): 3629-3642 .
    4. 蔡子勇,乔世范,檀俊坤,刘屹颀. 南沙港区深厚淤泥软土特性及空间异性研究. 地下空间与工程学报. 2023(03): 897-910 .
    5. 李天降,朱孟君,王哲,宋许根,甄洁,衣凡,雷华阳,郑刚,程雪松. 软土区管廊基坑柔性支护下基坑变形控制标准. 科学技术与工程. 2023(21): 9199-9206 .
    6. 田琦,陈国垚,王伟,史宗刚,刘红位. 福建沿海原状软土力学特性试验研究. 水利与建筑工程学报. 2023(05): 78-84 .
    7. 裘友强,张留俊,富志鹏,刘军勇,张微,王超. 内陆河湖相软土土性指标统计特征与竖向变化规律研究. 水利水电技术(中英文). 2023(12): 23-34 .
    8. 刘彬,徐苏静,张四俊,惠海鹏,居俊. 沿海地区深厚软土工程力学特性分析. 江苏建筑. 2022(03): 101-104 .
    9. 罗维高,林惠庭,章志,卢荣富,施雨,周晓敏. 大直径超长距离钢顶管施工技术应用分析. 广东土木与建筑. 2022(08): 71-75 .
    10. 李治斌,党星海,蔡明祥,赵健赟,郁林,李先怡. 基于PSInSAR技术的珠海市地表沉降监测与归因分析. 自然灾害学报. 2021(01): 38-46 .
    11. 戴巍,陈智超,冯青山,麦凌威,祝敏刚. 木质纤维与水泥共同改良软土的力学性能与微观机制分析. 水力发电. 2021(03): 121-125 .
    12. 陆惠平,朱挻,刘泽,何矾,李洪. 绍兴淤泥质软土工程特性. 建筑技术开发. 2021(15): 155-157 .
    13. 刘维正,葛孟源,李天雄. 南沙海相软土工程特性原位测试对比与统计规律分析. 岩土工程学报. 2021(S2): 267-275 . 本站查看

    Other cited types(9)

Catalog

    Article views (353) PDF downloads (63) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return