Citation: | ZHANG Zhao, YE Weimin, LI Yuwan, HE Yong, WANG Qiong, CHEN Yonggui. Thermal conductivity of GMZ bentonite pellet mixtures with different grain-size distributions[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1527-1535. DOI: 10.11779/CJGE20231186 |
[1] |
潘自强, 钱七虎. 中国高放废物地质处置战略研究[J]. 中国核电, 2013, 6(3): 194-196.
PAN Ziqiang, QIAN Qihu. The geological disposal of high-level radioactive waste strategy research in our country[J]. China Nuclear Power, 2013, 6(3): 194-196. (in Chinese)
|
[2] |
YE W M, CHEN Y G, CHEN B, et al. Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite[J]. Engineering Geology, 2010, 116(1/2): 12-20.
|
[3] |
刘月妙, 徐国庆, 刘淑芬, 等. 中国高放废物处置库缓冲/回填材料压实膨胀特性研究[J]. 铀矿地质, 2001, 17(1): 44-47.
LIU Yuemiao, XU Guoqing, LIU Shufen, et al. Study on compactibility and swelling property of buffer/backfili material for HLW pepository[J]. Uranium Geology, 2001, 17(1): 44-47. (in Chinese)
|
[4] |
KIM C S, MANA, DIXON D, et al. Clay-Based Pellets for Use in Tunnel Backfill and as Gap Fill in A Deep Geological Repository: Characterisation of Thermal-Mechanical Properties. Nuclear Waste Management Organization, NWMO[R]. Ottawa: Nuclear Waste Management Organization, Canada, 2012.
|
[5] |
CHEN L, LIU Y M, WANG J, et al. Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-mock-up test[J]. Engineering Geology, 2014, 172: 57-68. doi: 10.1016/j.enggeo.2014.01.008
|
[6] |
LUTERKORT D, JOHNNESSON L E, ERISKSSON P. Buffer Design and Installation Method: Installation Report [R]. Stockholm: SKB TR-17-06, 2017.
|
[7] |
GARCÍA-SIÑERIZ J L, VILLAR M V, REY M, et al. Engineered barrier of bentonite pellets and compacted blocks: State after reaching saturation[J]. Engineering Geology, 2015, 192: 33-45. doi: 10.1016/j.enggeo.2015.04.002
|
[8] |
TANG A M, CUI Y J, LE T T. A study on the thermal conductivity of compacted bentonites[J]. Applied Clay Science, 2008, 41(3/4): 181-189.
|
[9] |
LEE J O, CHOI H, LEE J Y. Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository[J]. Annals of Nuclear Energy, 2016, 94: 848-855. doi: 10.1016/j.anucene.2016.04.053
|
[10] |
叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821-826. https://cge.nhri.cn/article/id/13418
YE Weimin, WANG Qiong, PAN Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821-826. (in Chinese) https://cge.nhri.cn/article/id/13418
|
[11] |
刘月妙, 蔡美峰, 王驹. 高放废物处置库缓冲材料导热性能研究[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3891-3896.
LIU Yuemiao, CAI Meifeng, WANG Ju. Thermal properties of buffer material for high-level radioactive waste disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3891-3896. (in Chinese)
|
[12] |
曾召田, 梁珍, 邵捷昇, 等. 碱-热环境下MX80膨润土导热性能试验研究[J]. 岩土力学, 2022, 43(增刊2): 155-162.
ZENG Zhaotian, LIANG Zhen, SHAO Jiesheng, et al. Experimental study on thermal conductivity of MX80 bentonite in alkali-thermal environment[J]. Rock and Soil Mechanics, 2022, 43(S2): 155-162. (in Chinese)
|
[13] |
张虎元, 王学文, 刘平, 等. 缓冲回填材料砌块接缝密封及愈合研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3605-3614.
ZHANG Huyuan, WANG Xuewen, LIU Ping, et al. Study on joint sealing and healing of buffer backfill material block[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3605-3614. (in Chinese)
|
[14] |
KIVIKOSKI H, HEIMONEN I, HYTTINEN H P. Betonite Pellet Thermal Conductivity Techniques and Measurements Posiva[R]. Orkiluo: Posiva Soluction Lct, 2015.
|
[15] |
XU Y S, ZHOU X Y, SUN D A, et al. Thermal properties of GMZ bentonite pellet mixtures subjected to different temperatures for high-level radioactive waste repository[J]. Acta Geotechnica, 2022, 17(3): 981-992. doi: 10.1007/s11440-021-01244-3
|
[16] |
MASUDA R, ASANO H, TOGURI S, et al. Buffer construction technique using granular bentonite[J]. Journal of Nuclear Science and Technology, 2007, 44(3): 448-455.
|
[17] |
温志坚. 中国高放废物处置库缓冲材料物理性能[J]. 岩石力学与工程学报, 2006, 25(4): 794-800.
WEN Zhijian. Physical property of China's buffer material for high-level radioactive waste repositories[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 794-800. (in Chinese)
|
[18] |
ANDREASEN A H M, ANDERSENJ. Relation between grain size and interstitial space in products of unconsolidated granules [J]. Kolloid-Zeitschrift, 1930, 50: 217-228.
|
[19] |
ZHANG Z, YE W M, LIU Z R, et al. Influences of PSD curve and vibration on the packing dry density of crushed bentonite pellet mixtures[J]. Construction and Building Materials, 2018, 185: 246-255.
|
[20] |
李小川, 徐友伟, 黄庠永. 大孔隙对多孔介质导热性能影响的数值分析[J]. 华北电力大学学报(自然科学版), 2012, 39(6): 76-79.
LI Xiaochuan, XU Youwei, HUANG Xiangyong. Numerical analysis of the influence of macropore on thermal conductivity of porous media[J]. Journal of North China Electric Power University (Natural Science Edition), 2012, 39(6): 76-79. (in Chinese)
|
[21] |
ZHANG Z, NI X Q, WANG H, et al. Homogenization of a granular bentonite material upon saturation: an analysis based on pore structure evolutions[J]. Environmental Earth Sciences, 2023, 83(1): 16.
|
[22] |
LU Y, YE W M, WANG Q, et al. Investigation on anisotropic thermal conductivity of compacted GMZ bentonite[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1153-1162.
|
[23] |
WOODSIDE W, MESSMER J H. Thermal conductivity of porous media. I. unconsolidated sands[J]. Journal of Applied Physics, 1961, 32(9): 1688-1699.
|
[24] |
ZHANG Z, ZHANG F, MUHAMMED R D. Effect of air volume fraction on the thermal conductivity of compacted bentonite materials[J]. Engineering Geology, 2021, 284: 106045.
|
[25] |
FAROUKIO. Thermal Properties of Soils[M]. Hanover, NH: US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1981.
|