• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHEN Linfang, LÜ Qianwen, LIU Wenlian, ZHANG Jiaming, YANG Hongzhong, LI Ze. Numerical study on permeability properties of three-dimensional rock fracture under coupled stress-seepage-dissolution process[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 428-437. DOI: 10.11779/CJGE20231061
Citation: SHEN Linfang, LÜ Qianwen, LIU Wenlian, ZHANG Jiaming, YANG Hongzhong, LI Ze. Numerical study on permeability properties of three-dimensional rock fracture under coupled stress-seepage-dissolution process[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 428-437. DOI: 10.11779/CJGE20231061

Numerical study on permeability properties of three-dimensional rock fracture under coupled stress-seepage-dissolution process

More Information
  • Received Date: November 29, 2023
  • Available Online: April 17, 2024
  • Based on the lattice Boltzmann method, the evolution of seepage velocity field and solute concentration field is simulated by the double-distribution functions, and a numerical model is proposed to study the coupling mechanism of stress-seepage-dissolution in three-dimensional rock fracture. The evolution of fracture permeability properties is discussed considering the effects of seepage velocity, normal stress and dissolution rate. The results show that when the seepage velocity is low, the ions dissolved from the fracture wall cannot be transported in time, which results in a higher concentration and a lower dissolution rate at the outlet, the dissolved fracture is shaped as a "bell mouth". Increasing the normal stress decreases the fracture width and slows down the solute transport rate, which significantly reduces the dissolution at the fracture outlet, limiting the development of its permeability. When the wall dissolution rate is low, the fracture permeability shows a continuous and slow growth. As the dissolution rate increases, the dissolution amount at the outlet is significantly less than that at the inlet, which leads to a slow development of fracture permeability until the wall surface at the outlet exhibits significant dissolution, and the fracture permeability shows a rapid growth trend. The results can provide important theoretical support for the quantitative evaluation of permeability of rock fracture under acid corrosion.
  • [1]
    盛金昌, 李凤滨, 姚德生, 等. 渗流-应力-化学耦合作用下岩石裂隙渗透特性试验研究[J]. 岩石力学与工程学报, 2012, 31(5): 1016-1025. doi: 10.3969/j.issn.1000-6915.2012.05.019

    SHENG Jinchang, LI Fengbin, YAO Desheng, et al. Experimental study of seepage properties in rocks fracture under coupled hydro- mechanochemical process[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 1016-1025. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.05.019
    [2]
    姚池, 姜清辉, 位伟, 等. 复杂裂隙岩体水-力耦合模型及溶质运移模拟[J]. 岩石力学与工程学报, 2013, 32(8): 1656-1665.

    YAO Chi, JIANG Qinghui, WEI Wei, et al. Numerical simulation of hydro-mechanical coupling and solute transport in complex fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1656-1665. (in Chinese)
    [3]
    王珂, 盛金昌, 郜会彩, 等. 应力-渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J]. 岩土力学, 2020, 41(增刊1): 30-40.

    WANG Ke, SHENG Jinchang, GAO Huicai, et al. Study on seepage characteristics of rough fractures under the coupling effect of stress-seepage erosion[J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40. (in Chinese)
    [4]
    段玲玲, 邓华锋, 齐豫, 等. 水-岩作用下单裂隙灰岩渗流特性演化规律研究[J]. 岩土力学, 2020, 41(11): 3671-3679, 3768.

    DUAN Lingling, DENG Huafeng, QI Yu, et al. Study on the evolution of seepage characteristics of single-fractured limestone under water-rock interaction[J]. Rock and Soil Mechanics, 2020, 41(11): 3671-3679, 3768. (in Chinese)
    [5]
    GAN L, LIU Y, XU T, et al. Experimental investigation of the seepage characteristics of a single fracture in limestone with different roughness and seepage fluids[J]. Journal of Hydrology, 2023, 622: 129699. doi: 10.1016/j.jhydrol.2023.129699
    [6]
    WANG J X, YU Q C. Experimental investigations of the process of carbonate fracture dissolution enlargement under reservoir temperature and pressure conditions[J]. Geofluids, 2018, 2018: 5971421.
    [7]
    速宝玉, 张文捷, 盛金昌, 等. 渗流-化学溶解耦合作用下岩石单裂隙渗透特性研究[J]. 岩土力学, 2010, 31(11): 3361-3366. doi: 10.3969/j.issn.1000-7598.2010.11.001

    SU Baoyu, ZHANG Wenjie, SHENG Jinchang, et al. Study of permeability in single fracture under effects of coupled fluid flow and chemical dissolution[J]. Rock and Soil Mechanics, 2010, 31(11): 3361-3366. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.11.001
    [8]
    霍吉祥, 宋汉周, 杜京浓, 等. 表面反应和扩散迁移联合控制的粗糙单裂隙渗流-溶解耦合模型[J]. 岩石力学与工程学报, 2015, 34(5): 1013-1021.

    HUO Jixiang, SONG Hanzhou, DU Jingnong, et al. Coupled fluid flow and chemical dissolution model based on surface reaction and mass transfer control in a rough fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 1013-1021. (in Chinese)
    [9]
    李博, 黄嘉伦, 钟振, 等. 三维交叉裂隙渗流传质特性数值模拟[J]. 岩土力学, 2019, 40(9): 3670-3678.

    LI Bo, HUANG Jialun, ZHONG Zhen, et al. Numerical simulation on hydraulic and solute transport properties of 3D crossed fractures[J]. Rock and Soil Mechanics, 2019, 40(9): 3670-3678. (in Chinese)
    [10]
    王俊光, 梁冰. 渗透动水压力作用下裂隙岩体渗流与应力耦合分析[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(增刊1): 178-180.

    WANG Junguang, LIANG Bing. Analysis of coupled seepage and stress fields in rock mass by considering hydrodynamic seepage pressure[J]. Journal of Liaoning Technical University (Natural Science), 2009, 28(S1): 178-180. (in Chinese)
    [11]
    张超, 宋卫东, 李腾, 等. 破碎岩体应力-渗流耦合模型及数值模拟研究[J]. 采矿与安全工程学报, 2021, 38(6): 1220-1230.

    ZHANG Chao, SONG Weidong, LI Teng, et al. Study on stress seepage coupling model and numerical simulation of fractured rock mass[J]. Journal of Mining & Safety Engineering, 2021, 38(6): 1220-1230. (in Chinese)
    [12]
    MOHAMAD A A. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes[M]. London: LondonSpringer, 2011
    [13]
    TIAN Z W, XING H L, TAN Y L, et al. Reactive transport LBM model for CO2 injection in fractured reservoirs[J]. Computers & Geosciences, 2016, 86: 15-22.
    [14]
    CHEN L, KANG Q, VISWANATHAN H S, et al. Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals[J]. Water Resources Research, 2014, 50(12): 9343-9365. doi: 10.1002/2014WR015646
    [15]
    张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟[J]. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701

    ZHANG Ting, SHI Baochang, CHAI Zhenhua. Lattice Boltzmann simulation of dissolution and precipitation in porous media[J]. Acta Physica Sinica, 2015, 64(15): 154701. (in Chinese) doi: 10.7498/aps.64.154701
    [16]
    BANDIS S C, LUMSDEN A C, BARTEN N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1983, 20(6): 249-268.
    [17]
    QIAN Y H, D'HUMIERES D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484. doi: 10.1209/0295-5075/17/6/001
    [18]
    KANG Q, LICHTNER P C, ZHANG D. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media [J]. Journal of Geophysical Research, 2006, 111: B05203.
    [19]
    ZHANG T, SHI B, GUO Z, et al. General bounce-back scheme for concentration boundary condition in the lattice Boltzmann method[J]. Physical Review E, 2012, 85(2): 016701.
    [20]
    GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4): 366-374. doi: 10.1088/1009-1963/11/4/310
    [21]
    FOURNIER A, FUSSELL D, CARPENTER L. Computer rendering of stochastic models[J]. Communications of the ACM, 1982, 25(6): 371-384. doi: 10.1145/358523.358553
    [22]
    ZOU L, JING L, CVETKOVIC V. Shear-enhanced nonlinear flow in rough-walled rock fractures[J]. Journal of Rock Mechanics and Mining Sciences, 2017, 97: 33-45. doi: 10.1016/j.ijrmms.2017.06.001
    [23]
    SAUTY J P. An analysis of hydrodispersive transfer in aquifers[J]. Water Resources Research, 1980, 16(1): 145-158. doi: 10.1029/WR016i001p00145
    [24]
    KANG Q, LICHTNER P C, ZHANG D. An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale[J]. Water Resources Research, 2007, 43(12): 2578-2584.
  • Related Articles

    [1]CUI Chunyi, XU Minze, XU Chengshun, ZHAO Jingtong, LIU Hailong, MENG Kun. Seismic fragility analysis of subway station structures considering statistical uncertainty of seismic demands[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 453-462. DOI: 10.11779/CJGE20230980
    [2]ZHANG Chenlong, ZHANG Dongming, HUANG Zhongkai, HUANG Hongwei. Resilience assessment method for subway stations considering uncertainty of seismic intensity[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153
    [3]LI Jinqiang, ZHONG Zilan, SHEN Jiaxu, ZHANG Bu, ZHANG Yabo, DU Xiuli. Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1622-1631. DOI: 10.11779/CJGE20230397
    [4]DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019
    [5]QIU Dapeng, CHEN Jianyun, WANG Wenming, CAO Xiangyu. Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053
    [6]ZHEN Libin, SHI Yuebo, ZHONG Zilan, DU Xiuli, LUO Wenlin. Efficient seismic fragility of underground structures using endurance time analysis method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 777-784. DOI: 10.11779/CJGE20220188
    [7]MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014
    [8]ZHONG Zi-lan, SHEN Yi-yao, HAO Ya-ru, LI Li-yun, DU Xiu-li. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. DOI: 10.11779/CJGE202005014
    [9]JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo. Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 334-343. DOI: 10.11779/CJGE202002015
    [10]ZHU Hong-wei, YAO Ling-kan, LAI Jun. Seismic vulnerability assessment of gravity retaining walls based on performance[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return