• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
PAN Kun, LI Peipei, CAO Yi, WU Qixin, YANG Zhongxuan. Cyclic liquefaction behavior of silty sand considering initial static shear effect: a DEM investigation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 417-427. DOI: 10.11779/CJGE20231008
Citation: PAN Kun, LI Peipei, CAO Yi, WU Qixin, YANG Zhongxuan. Cyclic liquefaction behavior of silty sand considering initial static shear effect: a DEM investigation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 417-427. DOI: 10.11779/CJGE20231008

Cyclic liquefaction behavior of silty sand considering initial static shear effect: a DEM investigation

More Information
  • Received Date: October 12, 2023
  • Available Online: July 16, 2024
  • To gain more insights into the microscopic mechanism of the liquefaction behavior, the particle flow program PFC3D is used to simulate the liquefaction process of silty sands under undrained cyclic loading. The effects of the initial static shear stress and fines content on the cyclic liquefaction behavior of sand are investigated. The simulation responses of silty sand containing a small amount of fines are compared with those of clean sand under the same initial state parameters. The simulated results show that regardless of the fines content, different initial static shear stress conditions can result in two liquefaction failure patterns: cyclic mobility and residual deformation accumulation. Generally, the samples exhibit cyclic mobility accompanied by a decrease in the coordination number. The coordination number of samples under residual deformation accumulation changes slightly, while the fabric norm F is always greater than zero as the cyclic shearing proceeds. Under the identical initial state and stress conditions, the coordination number variation of fine-grained sand during cyclic loading is larger than that of clean sand, and its liquefaction resistance is also larger. Furthermore, a higher initial static shear level leads to a larger change in the coordination number and also an increase in the cyclic liquefaction resistance.
  • [1]
    蔡袁强, 于玉贞, 袁晓铭, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2016, 49(5): 9-30.

    CAI Yuanqiang, YU Yuzhen, YUAN Xiaoming, et al. Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2016, 49(5): 9-30. (in Chinese)
    [2]
    SZE H Y, YANG J. Failure modes of sand in undrained cyclic loading: impact of sample preparation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 152-169. doi: 10.1061/(ASCE)GT.1943-5606.0000971
    [3]
    SIVATHAYALAN S, HA D. Effect of static shear stress on the cyclic resistance of sands in simple shear loading[J]. Canadian Geotechnical Journal, 2011, 48(10): 1471-1484. doi: 10.1139/t11-056
    [4]
    冯大阔, 张建民. 初始静剪应力对粗粒土与结构接触面循环力学特性的影响[J]. 岩土力学, 2012, 33(8): 2277-2282, 2290. doi: 10.3969/j.issn.1000-7598.2012.08.007

    FENG Dakuo, ZHANG Jianmin. Influence of initial static shear stress on cycle mechanical behavior of interface between structure and gravelly soil[J]. Rock and Soil Mechanics, 2012, 33(8): 2277-2282, 2290. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.08.007
    [5]
    潘坤, 杨仲轩. 不规则动荷载作用下砂土孔压特性试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 79-84. doi: 10.11779/CJGE2017S1016

    PAN Kun, YANG Zhongxuan. Pore pressure characteristics of sand subjected to irregular loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 79-84. (in Chinese) doi: 10.11779/CJGE2017S1016
    [6]
    PAN K, YANG Z X. Effects of initial static shear on cyclic resistance and pore pressure generation of saturated sand[J]. Acta Geotechnica, 2018, 13(2): 473-487.
    [7]
    LEE KENNETH L, BOLTON S H. Dynamic strength of anisotropically consolidated sand[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(5): 169-190. doi: 10.1061/JSFEAQ.0001019
    [8]
    SUAZO G, FOURIE A, DOHERTY J, et al. Effects of confining stress, density and initial static shear stress on the cyclic shear response of fine-grained unclassified tailings[J]. Géotechnique, 2016, 66(5): 401-412. doi: 10.1680/jgeot.15.P.032
    [9]
    张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202.

    ZHANG Chenyang, CHEN Min, HU Mingjian, et al. Effect of fine particle composition content on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202. (in Chinese)
    [10]
    陈宇龙, 张宇宁. 非塑性细粒对饱和砂土液化特性影响的试验研究[J]. 岩土力学, 2016, 37(2): 507-516.

    CHEN Yulong, ZHANG Yuning. Experimental study of effects of non-plastic fines on liquefaction properties of saturated sand[J]. Rock and Soil Mechanics, 2016, 37(2): 507-516. (in Chinese)
    [11]
    AMINI F, QI G Z. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3): 208-217. doi: 10.1061/(ASCE)1090-0241(2000)126:3(208)
    [12]
    ZHOU G Y, PAN K, YANG Z X. Energy-based assessment of cyclic liquefaction behavior of clean and silty sand under sustained initial stress conditions[J]. Soil Dynamics and Earthquake Engineering, 2023, 164: 107609. doi: 10.1016/j.soildyn.2022.107609
    [13]
    PORCINO D D, DIANO V, TOMASELLO G. Effect of non-plastic fines on cyclic shear strength of sand under an initial static shear stress[M]//Springer Series in Geomechanics and Geoengineering. Cham: Springer International Publishing, 2018: 597-601.
    [14]
    左康乐, 顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究[J]. 岩土工程学报, 2023, 45(7): 1461-1470. doi: 10.11779/CJGE20220401

    ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. (in Chinese) doi: 10.11779/CJGE20220401
    [15]
    ZHANG L, EVANS T M. Investigation of initial static shear stress effects on liquefaction resistance using discrete element method simulations[J]. International Journal of Geomechanics, 2020, 20(7): 04020087. doi: 10.1061/(ASCE)GM.1943-5622.0001720
    [16]
    DAI B B, YANG J, LUO X D. A numerical analysis of the shear behavior of granular soil with fines[J]. Particuology, 2015, 21: 160-172. doi: 10.1016/j.partic.2014.08.010
    [17]
    GONG J, WANG X, LI L, et al. DEM study of the effect of fines content on the small-strain stiffness of gap-graded soils[J]. Computers and Geotechnics, 2019, 112: 35-40. doi: 10.1016/j.compgeo.2019.04.008
    [18]
    王涛, 朱俊高, 刘斯宏. 不同细料含量土石混合料塑性行为离散元模拟[J]. 力学学报, 2022, 54(4): 1075-1084.

    WANG Tao, ZHU Jungao, LIU Sihong. DEM simulation on plasticity behavior of soil-rock mixtures with different fine contents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1075-1084. (in Chinese)
    [19]
    ASTM D4767-88. Standard Test Method for Consolidated-Undrained Triaxial Compression Test on Cohesive Soils[S]. 1988.
    [20]
    SHIRE T, O'SULLIVAN C, HANLEY K J, et al. Fabric and effective stress distribution in internally unstable soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014072. doi: 10.1061/(ASCE)GT.1943-5606.0001184
    [21]
    DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2): 021309. doi: 10.1103/PhysRevE.72.021309
    [22]
    吴越, 杨仲轩, 徐长节. 初始组构各向异性对砂土力学特性及临界状态的影响[J]. 岩土力学, 2016, 37(9): 2569-2576.

    WU Yue, YANG Zhongxuan, XU Changjie. Effects of initial fabric anisotropy on mechanical behavior and critical state of granular soil[J]. Rock and Soil Mechanics, 2016, 37(9): 2569-2576. (in Chinese)
    [23]
    YANG J, WEI L M. Collapse of loose sand with the addition of fines: the role of particle shape[J]. Géotechnique, 2012, 62(12): 1111-1125. doi: 10.1680/geot.11.P.062
    [24]
    BEEN K, JEFFERIES M G. Discussion: a state parameter for sands[J]. Géotechnique, 1986, 36(1): 123-132. doi: 10.1680/geot.1986.36.1.123
    [25]
    王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426.

    WANG Yunjia, SONG Erxiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills[J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426. (in Chinese)
    [26]
    YANG J, SZE H Y. Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions[J]. Géotechnique, 2011, 61(1): 59-73. doi: 10.1680/geot.9.P.019
    [27]
    THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53. doi: 10.1680/geot.2000.50.1.43
    [28]
    SHIRE T, O'SULLIVAN C, HANLEY K J. The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials[J]. Granular Matter, 2016, 18(3): 52. doi: 10.1007/s10035-016-0654-9
    [29]
    ZHOU W, WU W, MA G, et al. Undrained behavior of binary granular mixtures with different fines contents[J]. Powder Technology, 2018, 340: 139-153. doi: 10.1016/j.powtec.2018.09.022
    [30]
    MINH N H, CHENG Y P, THORNTON C. Strong force networks in granular mixtures[J]. Granular Matter, 2014, 16(1): 69-78. doi: 10.1007/s10035-013-0455-3
    [31]
    GONG J, NIE Z H, ZHU Y G, et al. Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM[J]. Computers and Geotechnics, 2019, 106: 161-176. doi: 10.1016/j.compgeo.2018.10.021
  • Cited by

    Periodical cited type(24)

    1. 罗庆斐,袁松,袁飞云,周道良,王峥峥. 不同转向角度曲线隧道穿越走滑断层力学行为. 大连理工大学学报. 2025(02): 171-180 .
    2. 吴斌,袁松,康泽洲,罗庆斐,王峥峥. 地震和断层错动共同作用下大转向曲线隧道力学行为研究. 震灾防御技术. 2025(01): 153-162 .
    3. 张恒,徐龙军,彭龙强,谢礼立. 跨断层铁路隧道精细化建模与力学分析. 地震工程与工程振动. 2024(05): 1-12 .
    4. 袁松,王希宝,袁飞云,罗庆斐,肖锋,王峥峥. 不同类型断层错动下半圆形曲线隧道力学行为. 公路. 2024(12): 440-449 .
    5. 韩俊艳,赵文乐,帅义,侯本伟,郭富强,杜修力. 逆断层作用下局部腐蚀埋地管道的失效模式研究. 防灾减灾工程学报. 2024(06): 1386-1397 .
    6. 王综仕,韩现民,徐孟起,王为鑫. 断层错动-地震不同时序作用对隧道的影响研究. 石家庄铁道大学学报(自然科学版). 2024(04): 45-50+124 .
    7. 付艳斌,王福道,陈湘生,陆岸典,沈翔,李旭辉,王贝凌,洪成雨. 破碎带地层盾构隧道建造关键问题. 铁道标准设计. 2023(01): 25-33 .
    8. 章玉伟,徐泽鑫,谢远,邱军领,杨桃,谢永利. 断层破碎带隧道围岩敏感性及沉降控制分析. 科学技术与工程. 2023(08): 3493-3501 .
    9. 张玉芳,袁坤,周文皎,范家玮. 门源地震对跨冷龙岭断层的大梁隧道结构变形特征和地表裂缝分布规律研究. 岩石力学与工程学报. 2023(05): 1055-1069 .
    10. 陈斌辉. 跨活断层公路隧道损伤规律研究. 河南科技. 2023(10): 59-62 .
    11. 肖文斌,谢印标,郑扬,武科,陈榕,李秋雷,程睿哲. 活动断层下城市地铁隧道变形破坏与损伤. 山东大学学报(工学版). 2023(03): 1-13 .
    12. 王志岗,陶连金,石城,安韶. 逆断层错动作用下考虑柔性接头的综合管廊结构力学行为研究. 铁道科学与工程学报. 2023(06): 2256-2267 .
    13. 刘汉东,赵亚文,杨长林,徐红超,李冬冬. 穿越活断层倒虹吸结构变形影响敏感性研究. 华北水利水电大学学报(自然科学版). 2023(03): 81-88 .
    14. 张卜,姬若愚,钟紫蓝,许成顺,杜修力. 穿越岩土交界面竖井结构水平地震损伤破坏模式. 隧道与地下工程灾害防治. 2023(03): 27-40 .
    15. 史新伟,冯新,范哲. 逆断层作用下复合衬砌输水隧洞损伤演化分析. 防灾减灾工程学报. 2023(05): 1132-1140 .
    16. 周光新,盛谦,崔臻,王天强,马亚丽娜,付兴伟. 走滑断层错动影响下跨活断层铰接隧洞破坏机制模型试验. 岩土力学. 2022(01): 37-50 .
    17. 董航凯. 断裂作用对输水管道的影响效应研究. 水利与建筑工程学报. 2022(02): 66-71 .
    18. 崔臻,盛谦,李建贺,付兴伟. 蠕滑错断-强震时序作用下跨活断裂隧道变形破坏机制初步研究. 岩土力学. 2022(05): 1364-1373 .
    19. 王杰,盛俭,赵梦丹,王欣宇. 康西瓦断裂错动对近断层隧道影响的数值模拟分析. 地震工程与工程振动. 2022(03): 235-242 .
    20. 李翔,孙文昊,孙州,陈立保. 盾构法隧道穿越活动断裂带方案探讨. 隧道建设(中英文). 2022(S1): 369-375 .
    21. 姜久纯. 黏滑错动下地铁隧道结构破坏特征及设防措施. 西安科技大学学报. 2021(03): 474-480 .
    22. 王鸿儒,钟紫蓝,赵密,汪振,赵旭,杜修力. 走滑断层黏滑错动下隧道破坏的模型试验研究. 北京工业大学学报. 2021(07): 691-701 .
    23. 陈立保,孙文昊,孙州,武哲书. 胶州湾第二海底隧道跨断裂带抗错方案研究. 铁道标准设计. 2021(10): 116-122+166 .
    24. 王杰,盛俭,赵梦丹,王欣宇. 断层错动对隧道工程影响研究的若干进展. 防灾科技学院学报. 2021(04): 34-42 .

    Other cited types(26)

Catalog

    Article views (339) PDF downloads (97) Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return