Citation: | SHI Anning, JIANG Mingjing, WANG Siyuan, LIN Jiayu. Distinct element method for static and flow mobility characteristics of lunar regolith based on particle shape characteristics[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 749-758. DOI: 10.11779/CJGE20230997 |
[1] |
刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907-918.
LIU Jianzhong, LI Xiongyao, ZHU Kai, et al. Key science and technology issues of lunar in situ resource utilization[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 907-918. (in Chinese)
|
[2] |
蒋明镜, 张鑫蕊, 司马军, 等. 壤基材料加筋月壤技术在月球基地建设中的应用[J]. 苏州科技大学学报(自然科学版), 2023, 40(3): 11-20, 53.
JIANG Mingjing, ZHANG Xinrui, SIMA Jun, et al. Future application of lunar-textile composite/reinforced regolith to the construction of lunar bases[J]. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2023, 40(3): 11-20, 53. (in Chinese)
|
[3] |
蒋明镜, 王思远, 姜朋明, 等. 月球基地的建设远景与挑战[J]. 山东大学学报(工学版), 2024, 54(2): 114-125.
JIANG Mingjing, WANG Siyuan, JIANG Pengming, et al. The long-range perspective and challenges for the construction of lunar base[J]. Journal of Shandong University (Engineering Science), 2024, 54(2): 114-125. (in Chinese)
|
[4] |
FATERI M, COWLEY A, BERNILLON C, et al. Flowability of Lunar Regolith Simulant[C]// European Planetary Science Congress. Riga. 2017.
|
[5] |
LIU X Y, HU Z, WU W N, et al. DEM study on the surface mixing and whole mixing of granular materials in rotary drums[J]. Powder Technology, 2017, 315: 438-444.
|
[6] |
BRANDAO R J, LIMA R M, SANTOS R L, et al. Experimental study and DEM analysis of granular segregation in a rotating drum[J]. Powder Technology, 2020, 364: 1-12.
|
[7] |
YAMAMOTO M, ISHIHARA S, KANO J. Evaluation of particle density effect for mixing behavior in a rotating drum mixer by DEM simulation[J]. Advanced Powder Technology, 2016, 27(3): 864-870.
|
[8] |
BRUCKS A, ARNDT T, OTTINO J M, et al. Behavior of flowing granular materials under variable G[J]. Statistical, Nonlinear, and Soft Matter Physics (Physical Review E), 2007, 75: 032301.
|
[9] |
KLEINHANS M G, MARKIES H, DE VET S J, et al. Static and dynamic angles of repose in loose granular materials under reduced gravity[J]. Journal of Geophysical Research (Planets), 2011, 116(E11): E11004.
|
[10] |
KLEIN S P, WHITE B R. Dynamic shear of granular material under variable gravity conditions[J]. AIAA Journal, 1990, 28(10): 1701-1702. doi: 10.2514/3.10461
|
[11] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
|
[12] |
蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001
JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001
|
[13] |
WALTON O R, JOHNSON S M. DEM simulations of the effects of particle shape, interparticle cohesion, and gravity on rotating drum flows of lunar regolith[C]//Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. 2010: 36-41. [13] WALTON O R, JOHNSON S M. DEM simulations of the effects of particle shape, interparticle cohesion, and gravity on rotating drum flows of lunar regolith[C]//Earth and Space 2010. Honolulu, 2010.
|
[14] |
NAKASHIMA H, SHIOJI Y, KOBAYASHI T, et al. Determining the angle of repose of sand under low-gravity conditions using discrete element method[J]. Journal of Terramechanics, 2011, 48(1): 17-26. doi: 10.1016/j.jterra.2010.09.002
|
[15] |
CHEN H, CHEN Y X, WEI Q S, et al. Effect of gravity on repose angle and contact forces of particulate pile composed of non-monodispersed particles[J]. International Journal of Aerospace Engineering, 2019, 2019: 8513149.
|
[16] |
SUNDAY C, MURDOCH N, TARDIVEL S, et al. Validating N-body code chrono for granular DEM simulations in reduced-gravity environments[J]. Monthly Notices of the Royal Astronomical Society, 2020, 498(1): 1062-1079. doi: 10.1093/mnras/staa2454
|
[17] |
KARAPIPERIS K, MARSHALL J P, ANDRADE J E. Reduced gravity effects on the strength of granular matter: DEM simulations versus experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(5): 06020005. doi: 10.1061/(ASCE)GT.1943-5606.0002232
|
[18] |
ANTONY S J, AROWOSOLA B, RICHTER L, et al. Modeling the flow characteristics of granular materials under low gravity environments using discrete element method[C]// Proceedings of the Earth and Space 2021, Reston, 2021: 12-21.
|
[19] |
ELEKES F, PARTELI E J R. An expression for the angle of repose of dry cohesive granular materials on Earth and in planetary environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(38): e2107965118.
|
[20] |
JIANG M J, MAO H, XI B L, et al. Three-dimensional DEM analysis of granular flows under different gravity levels in rotating cylinders[C]// Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours. Singapore, 2018.
|
[21] |
JIANG M J, SHEN Z F, WANG J F. A novel three- dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011
|
[22] |
王思远, 蒋明镜. 基于嫦娥五号月壤粒形特征的离散元模拟方法[J]. 岩土工程学报, 2024, 46(4): 833-842. doi: 10.11779/CJGE20230040
WANG Siyuan, JIANG Mingjing. Lunar regolith simulations with discrete element method based on Chang'E-5 mission's lunar soil particle morphology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 833-842. (in Chinese) doi: 10.11779/CJGE20230040
|
[23] |
WOOD J A, DICKEY J S, MARVIN U B, et al. Lunar anorthosites and a geophysical model of the moon[J]. Apollo 11 Science Conference, 1970: 965-988.
|
[24] |
月球与深空探测科学数据与样品发布系统[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02.
Lunar and Deep Space Exploration Scientific Data and Sample Release Syslem[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02. (in Chinese)
|
[25] |
WU K, WU K, PIZETTE P, et al. Experimental and numerical study of cylindrical triaxial test on mono-sized glass beads under quasi-static loading condition[J]. Advanced Powder Technology, 2017, 28: 155-166.
|
[26] |
HÄRTL J, OOI J Y. Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction[J]. Granular Matter, 2008, 10(4): 263-271.
|
[27] |
LOMMEN S, SCHOTT D, LODEWIJKS G. DEM speedup: Stiffness effects on behavior of bulk material[J]. Particuology, 2014, 12: 107-112. http://d.g.wanfangdata.com.cn/Periodical_zgklxb-e201401013.aspx
|
[28] |
JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
|
[29] |
KOMOSSA H, WIRTZ S, SCHERER V, et al. Transversal bed motion in rotating drums using spherical particles: comparison of experiments with DEM simulations[J]. Powder Technology, 2014, 264: 96-104.
|
[30] |
ARNTZ M M H D, BEEFTINK H H, DEN OTTER W K, et al. Segregation of granular particles by mass, radius, and density in a horizontal rotating drum[J]. AIChE Journal, 2014, 60(1): 50-59.
|
[31] |
MELLMANN J. The transverse motion of solids in rotating cylinders: forms of motion and transition behavior[J]. Powder Technology, 2001, 118(3): 251-270.
|
[32] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[33] |
THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53.
|
[34] |
KOVAL G, ROUX J N, CORFDIR A, et al. Annular shear of cohesionless granular materials: from the inertial to quasistatic regime[J]. Statistical, Nonlinear, and Soft Matter Physics (Physical Review E), 2009, 79: 021306.
|
[35] |
JOP P, FORTERRE Y, POULIQUEN O. A constitutive law for dense granular flows[J]. Nature, 2006, 441(7094): 727-730.
|