• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHI Anning, JIANG Mingjing, WANG Siyuan, LIN Jiayu. Distinct element method for static and flow mobility characteristics of lunar regolith based on particle shape characteristics[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 749-758. DOI: 10.11779/CJGE20230997
Citation: SHI Anning, JIANG Mingjing, WANG Siyuan, LIN Jiayu. Distinct element method for static and flow mobility characteristics of lunar regolith based on particle shape characteristics[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 749-758. DOI: 10.11779/CJGE20230997

Distinct element method for static and flow mobility characteristics of lunar regolith based on particle shape characteristics

More Information
  • Received Date: August 19, 2023
  • Available Online: November 10, 2024
  • Since it exhibits uniquely grain shape, physical and mechanical characteristics, the lunar regolith is extremely important for utilization of in-situ resources, selection of base station location and construction in lunar exploration. Based on the data of the shape characteristics of the lunar regolith, the distinct element method (DEM) is employed to study the static and flow mobility characteristics of the lunar regolith. Firstly, to reproduce the macroscopic static and flow behaviors of the lunar regolith sample, a complete three-dimensional contact model considering the grain shape characteristics of the Chang'E-5 mission is used, and then the corresponding shape parameters (coefficient of rolling resistance β) for different grain sizes are determined. Secondly, the triaxial tests under different confining pressures and the rotating drum tests under different rotating speeds are simulated using the DEM, and the samples include the lunar regolith, Toyoura sand, and glass beads. Finally, a contrastive analysis of the static and flow mobility characteristics of the three materials is conducted. The simulated results show that in the triaxial tests, compared with the other two materials, the lunar regolith has the largest apparent cohesion and internal friction angle, and it exhibits dilatancy in the shearing process. In the rotating drum tests, compared with the other two materials, the lunar regolith has the largest inclination angle and void ratio, and the smallest shearing rate and coordination number. Under a certain range of the inertia number, the lunar regolith has the largest effective friction coefficient compared with the other two materials, indicating that it has the smallest flow mobility.
  • [1]
    刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907-918.

    LIU Jianzhong, LI Xiongyao, ZHU Kai, et al. Key science and technology issues of lunar in situ resource utilization[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 907-918. (in Chinese)
    [2]
    蒋明镜, 张鑫蕊, 司马军, 等. 壤基材料加筋月壤技术在月球基地建设中的应用[J]. 苏州科技大学学报(自然科学版), 2023, 40(3): 11-20, 53.

    JIANG Mingjing, ZHANG Xinrui, SIMA Jun, et al. Future application of lunar-textile composite/reinforced regolith to the construction of lunar bases[J]. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2023, 40(3): 11-20, 53. (in Chinese)
    [3]
    蒋明镜, 王思远, 姜朋明, 等. 月球基地的建设远景与挑战[J]. 山东大学学报(工学版), 2024, 54(2): 114-125.

    JIANG Mingjing, WANG Siyuan, JIANG Pengming, et al. The long-range perspective and challenges for the construction of lunar base[J]. Journal of Shandong University (Engineering Science), 2024, 54(2): 114-125. (in Chinese)
    [4]
    FATERI M, COWLEY A, BERNILLON C, et al. Flowability of Lunar Regolith Simulant[C]// European Planetary Science Congress. Riga. 2017.
    [5]
    LIU X Y, HU Z, WU W N, et al. DEM study on the surface mixing and whole mixing of granular materials in rotary drums[J]. Powder Technology, 2017, 315: 438-444.
    [6]
    BRANDAO R J, LIMA R M, SANTOS R L, et al. Experimental study and DEM analysis of granular segregation in a rotating drum[J]. Powder Technology, 2020, 364: 1-12.
    [7]
    YAMAMOTO M, ISHIHARA S, KANO J. Evaluation of particle density effect for mixing behavior in a rotating drum mixer by DEM simulation[J]. Advanced Powder Technology, 2016, 27(3): 864-870.
    [8]
    BRUCKS A, ARNDT T, OTTINO J M, et al. Behavior of flowing granular materials under variable G[J]. Statistical, Nonlinear, and Soft Matter Physics (Physical Review E), 2007, 75: 032301.
    [9]
    KLEINHANS M G, MARKIES H, DE VET S J, et al. Static and dynamic angles of repose in loose granular materials under reduced gravity[J]. Journal of Geophysical Research (Planets), 2011, 116(E11): E11004.
    [10]
    KLEIN S P, WHITE B R. Dynamic shear of granular material under variable gravity conditions[J]. AIAA Journal, 1990, 28(10): 1701-1702. doi: 10.2514/3.10461
    [11]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [12]
    蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001

    JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001
    [13]
    WALTON O R, JOHNSON S M. DEM simulations of the effects of particle shape, interparticle cohesion, and gravity on rotating drum flows of lunar regolith[C]//Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. 2010: 36-41. [13] WALTON O R, JOHNSON S M. DEM simulations of the effects of particle shape, interparticle cohesion, and gravity on rotating drum flows of lunar regolith[C]//Earth and Space 2010. Honolulu, 2010.
    [14]
    NAKASHIMA H, SHIOJI Y, KOBAYASHI T, et al. Determining the angle of repose of sand under low-gravity conditions using discrete element method[J]. Journal of Terramechanics, 2011, 48(1): 17-26. doi: 10.1016/j.jterra.2010.09.002
    [15]
    CHEN H, CHEN Y X, WEI Q S, et al. Effect of gravity on repose angle and contact forces of particulate pile composed of non-monodispersed particles[J]. International Journal of Aerospace Engineering, 2019, 2019: 8513149.
    [16]
    SUNDAY C, MURDOCH N, TARDIVEL S, et al. Validating N-body code chrono for granular DEM simulations in reduced-gravity environments[J]. Monthly Notices of the Royal Astronomical Society, 2020, 498(1): 1062-1079. doi: 10.1093/mnras/staa2454
    [17]
    KARAPIPERIS K, MARSHALL J P, ANDRADE J E. Reduced gravity effects on the strength of granular matter: DEM simulations versus experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(5): 06020005. doi: 10.1061/(ASCE)GT.1943-5606.0002232
    [18]
    ANTONY S J, AROWOSOLA B, RICHTER L, et al. Modeling the flow characteristics of granular materials under low gravity environments using discrete element method[C]// Proceedings of the Earth and Space 2021, Reston, 2021: 12-21.
    [19]
    ELEKES F, PARTELI E J R. An expression for the angle of repose of dry cohesive granular materials on Earth and in planetary environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(38): e2107965118.
    [20]
    JIANG M J, MAO H, XI B L, et al. Three-dimensional DEM analysis of granular flows under different gravity levels in rotating cylinders[C]// Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours. Singapore, 2018.
    [21]
    JIANG M J, SHEN Z F, WANG J F. A novel three- dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011
    [22]
    王思远, 蒋明镜. 基于嫦娥五号月壤粒形特征的离散元模拟方法[J]. 岩土工程学报, 2024, 46(4): 833-842. doi: 10.11779/CJGE20230040

    WANG Siyuan, JIANG Mingjing. Lunar regolith simulations with discrete element method based on Chang'E-5 mission's lunar soil particle morphology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 833-842. (in Chinese) doi: 10.11779/CJGE20230040
    [23]
    WOOD J A, DICKEY J S, MARVIN U B, et al. Lunar anorthosites and a geophysical model of the moon[J]. Apollo 11 Science Conference, 1970: 965-988.
    [24]
    月球与深空探测科学数据与样品发布系统[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02.

    Lunar and Deep Space Exploration Scientific Data and Sample Release Syslem[EB/OL]. http://202.106.152.98:8081/moondata/web/datainfo/main.action#,2007-10-24/2023-01-02. (in Chinese)
    [25]
    WU K, WU K, PIZETTE P, et al. Experimental and numerical study of cylindrical triaxial test on mono-sized glass beads under quasi-static loading condition[J]. Advanced Powder Technology, 2017, 28: 155-166.
    [26]
    HÄRTL J, OOI J Y. Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction[J]. Granular Matter, 2008, 10(4): 263-271.
    [27]
    LOMMEN S, SCHOTT D, LODEWIJKS G. DEM speedup: Stiffness effects on behavior of bulk material[J]. Particuology, 2014, 12: 107-112. http://d.g.wanfangdata.com.cn/Periodical_zgklxb-e201401013.aspx
    [28]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
    [29]
    KOMOSSA H, WIRTZ S, SCHERER V, et al. Transversal bed motion in rotating drums using spherical particles: comparison of experiments with DEM simulations[J]. Powder Technology, 2014, 264: 96-104.
    [30]
    ARNTZ M M H D, BEEFTINK H H, DEN OTTER W K, et al. Segregation of granular particles by mass, radius, and density in a horizontal rotating drum[J]. AIChE Journal, 2014, 60(1): 50-59.
    [31]
    MELLMANN J. The transverse motion of solids in rotating cylinders: forms of motion and transition behavior[J]. Powder Technology, 2001, 118(3): 251-270.
    [32]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [33]
    THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53.
    [34]
    KOVAL G, ROUX J N, CORFDIR A, et al. Annular shear of cohesionless granular materials: from the inertial to quasistatic regime[J]. Statistical, Nonlinear, and Soft Matter Physics (Physical Review E), 2009, 79: 021306.
    [35]
    JOP P, FORTERRE Y, POULIQUEN O. A constitutive law for dense granular flows[J]. Nature, 2006, 441(7094): 727-730.

Catalog

    Article views (336) PDF downloads (88) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return