• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LI Dongyang, MA Zhihong, LIU Jie, YIN Jili, SUN Boyan. Upper-bound limit analysis of seismic rotational stability of retaining walls with cohesive backfill considering embedment depth[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1181-1189. DOI: 10.11779/CJGE20230990
Citation: LI Dongyang, MA Zhihong, LIU Jie, YIN Jili, SUN Boyan. Upper-bound limit analysis of seismic rotational stability of retaining walls with cohesive backfill considering embedment depth[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1181-1189. DOI: 10.11779/CJGE20230990

Upper-bound limit analysis of seismic rotational stability of retaining walls with cohesive backfill considering embedment depth

More Information
  • Received Date: October 10, 2023
  • Available Online: September 28, 2024
  • For most researches on the seismic stability of retaining walls, the embedment depth of the wall is often assumed to be zero, resulting in the role of backfill in front of the wall being neglected. Based on the theory of the upper bound limit analysis, the impact of embedment depth on the seismic stability of retaining walls with cohesive backfill is investigated. The diagonal slice method is employed to differentiate the backfill in front of and behind the wall into rigid soil slices parallel to the rupture surface. A wall-soil system in which the retaining wall rotates around the toe of the wall and the fill in front of and behind the wall slides in pieces is established. According to the work-energy balance equation, the expression for the seismic acceleration coefficient of the retaining wall is derived, and the effects of filling height, internal friction angle, filling cohesion and wall-soil friction angle on the seismic rotational stability of the retaining wall under seismic action are discussed. The results show that when the ratio of the height of backfill in front of the wall to the height of backfill behind the wall (H2/H1) is greater than 0.15, the coefficient of seismic yield acceleration will increase dramatically, and the seismic stability of the retaining wall will be underestimated if the effects of backfill in front of the wall are neglected at this time. Finally, the accuracy of the proposed method is confirmed by comparing with the method of the limit equilibrium theory.
  • [1]
    SARAN S, PRAKASH S. Dimensionless parameters for static and dynamic earth pressures behind retaining walls[J]. Indian Geotechnical J, 1968, 7(3): 295-310.
    [2]
    SHUKLA S K, GUPTA S K, SIVAKUGAN N. Active earth pressure on retaining wall for c-ϕ soil backfill under seismic loading condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 690-696. doi: 10.1061/(ASCE)GT.1943-5606.0000003
    [3]
    SHUKLA S K. Dynamic active thrust from c-ϕ soil backfills[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(3): 526-529. doi: 10.1016/j.soildyn.2010.10.001
    [4]
    SHUKLA S K, HABIBI D. Dynamic passive pressure from c-ϕ soil backfills[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 845-848.
    [5]
    张瀚文, 蒋良潍, 杜美玲, 等. 重力式挡土墙抗震稳定性检算最不利状态选取探讨[J]. 防灾减灾工程学报, 2024, 44(2): 372-380.

    ZHANG Hanwen, JIANG Liangwei, DU Meiling, et al. Exploration on selection of the most unfavorable state for seismic stability calculation of gravity retaining walls[J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(2): 372-380. (in Chinese)
    [6]
    于昕左, 肖世国. 水平柔性拉筋式重力墙地震土压力拟静力分析方法[J]. 土木工程学报, 2019, 52(增刊2): 180-185.

    YU Xinzuo, XIAO Shiguo. Quasi-static analysis method of seismic earth pressure of horizontal flexible tension bar gravity wall[J]. China Civil Engineering Journal, 2019, 52(S2): 180-185. (in Chinese)
    [7]
    贾亮, 贺世开, 李刚, 等. 地震作用下加筋挡土墙内部稳定性分析[J]. 岩土工程学报, 2018, 40(增刊1): 107-111.

    JIA Liang, HE Shikai, LI Gang, et al. Internal stability of reinforced retaining wall under earthquake loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 107-111. (in Chinese)
    [8]
    王桂林, 赵飞, 张永兴. 重力式挡土墙地震旋转位移下的屈服加速度[J]. 岩土力学, 2013, 34(6): 1579-1585.

    WANG Guilin, ZHAO Fei, ZHANG Yongxing. Earthquake yield acceleration of seismic rotational displacement of gravity retaining wall[J]. Rock and Soil Mechanics, 2013, 34(6): 1579-1585. (in Chinese)
    [9]
    TEODORU I B. Design charts for embedded earth retaining walls according to eurocode 7[C]// SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings, 15th International Multidisciplinary Scientific GeoConference SGEM2015, Science and Technologies in Geology, Exploration and Mining. Stef92 Technology, 2011.
    [10]
    KRABBENHOFT K. Plastic design of embedded retaining walls[J]. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 2019, 172(2): 131-144. doi: 10.1680/jgeen.17.00151
    [11]
    CHOWDHURY S S. A study on lateral earth pressure against strutted retaining wall in cohesionless soil deposit[J]. International Journal of Geotechnical Engineering, 2019, 13(2): 122-138. doi: 10.1080/19386362.2017.1326683
    [12]
    杨剑. 挡土墙地震被动土压力的拟动力分析[J]. 防灾减灾工程学报, 2012, 32(3): 365-371.

    YANG Jian. Study on passive earth pressure of vertical retaining walls by pseudo-dynamic analysis[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(3): 365-371. (in Chinese)
    [13]
    RAJESH B G, CHOUDHURY D. Stability of seawalls using modified pseudo-dynamic method under earthquake conditions[J]. Applied Ocean Research, 2017, 65: 154-165. doi: 10.1016/j.apor.2017.04.004
    [14]
    RAJESH B G, CHOUDHURY D. Computation of sliding displacements of seawalls under earthquake conditions[J]. Natural Hazards, 2019, 96(1): 97-119. doi: 10.1007/s11069-018-3531-5
    [15]
    LI X G, LIU J. Seismic rotational stability analysis of gravity retaining wall under heavy rainfall[J]. KSCE Journal of Civil Engineering, 2021, 25(12): 4575-4584. doi: 10.1007/s12205-021-1623-3
    [16]
    LIU J, LI X G. Upper-bound limit analysis on seismic rotational stability of waterfront retaining walls[J]. Marine Georesources & Geotechnology, 2022, 40(5): 554-562.
    [17]
    马志宏, 郭督, 杨轶博, 等. 海啸作用下滨水挡土墙抗震转动稳定性上限分析[J]. 世界地震工程, 2023, 39(2): 230-238.

    MA Zhihong, GUO Du, YANG Yibo, et al. Upper-bound limit analysis on rotational stability of waterfront retaining walls under earthquake and tsunami[J]. World Earthquake Engineering, 2023, 39(2): 230-238. (in Chinese)
    [18]
    LI X P, WU Y, HE S M. Seismic stability analysis of gravity retaining walls[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 875-878. doi: 10.1016/j.soildyn.2010.04.005
    [19]
    ZHANG X X, HE S M, SU Q, et al. Seismic stability analysis of pre-stressed rope of anti-slide retaining wall[J]. Geotechnical and Geological Engineering, 2013, 31(4): 1393-1398. doi: 10.1007/s10706-013-9627-5
    [20]
    刘杰, 黄达, 顾东明, 等. 考虑墙前填土作用下无黏性填土挡墙地震转动稳定性分析[J]. 岩土工程学报, 2014, 36(11): 2144-2148.

    LIU Jie, HUANG Da, GU Dongming, et al. Seismic rotating stability analysis of retaining wall backfilled by cohesiveless soils considering influence of front cover soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2144-2148. (in Chinese)
    [21]
    ZENG X, STEEDMAN R S. Rotating block method for seismic displacement of gravity walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 709-717. doi: 10.1061/(ASCE)1090-0241(2000)126:8(709)
    [22]
    HUANG D, LIU J. Upper-bound limit analysis on seismic rotational stability of retaining wall[J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2664-2669. doi: 10.1007/s12205-016-0471-z
    [23]
    陈惠发, 詹世斌. 极限分析与土体塑性[M]. 北京: 人民交通出版社, 1995.

    CHEN Huifa, ZHAN Shibin. Limit Analysis and Soil Plasticity[M]. Beijing: China Communications Press, 1995. (in Chinese)

Catalog

    Article views (236) PDF downloads (59) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return