• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Zhengqiang, CAI Yongchang, WU Jiangbin. Borehole optimization method utilizing local coupled Markov chain model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2620-2628. DOI: 10.11779/CJGE20230927
Citation: ZENG Zhengqiang, CAI Yongchang, WU Jiangbin. Borehole optimization method utilizing local coupled Markov chain model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2620-2628. DOI: 10.11779/CJGE20230927

Borehole optimization method utilizing local coupled Markov chain model

More Information
  • Received Date: September 19, 2023
  • Available Online: April 18, 2024
  • The rational use of exploration data for accurate geological modeling and the step-by-step optimization of drilling plans are of great importance for reducing the exploration costs and improving the efficiency of stratigraphic data collection. Due to the typically sparse borehole data at the early stage of geotechnical surveying and the potential for significant variations in the geological structure across different locations within the project area, the difficulty of borehole design is greatly increased. The CMC model can handle sparse geological exploration data and is widely used in geological modeling and geological uncertainty analysis due to its simple parameters and straightforward theory. However, the existing CMC models cannot be used for the borehole design in complexly varying strata because they rely on the global sequence direction and the Walther's constant, which may lead to incorrect estimates of geological structures. A method for optimizing the additional boreholes is proposed based on the local coupled Markov chain model (LCMC model). This method establishes a geological model that adapts to complex and varying strata by fragmenting borehole data from geological profiles, employing local stochastic modeling, and overlaying multiple fragments; it uses an entropy map generated by the LCMC model to quantitatively evaluate the uncertainty of geological units; and it progressively predicts the optimal locations for the additional boreholes based on the column-averaged entropy curve. The research results show that, compared to the traditional methods, the proposed approach can achieve more reasonable and efficient borehole optimization, increase the modeling accuracy of complex strata with changing dips and directions, and reduce the uncertainty in geological profile simulations. The proposed method offers a the beneficial reference for borehole design in geologically complex and variable regions.
  • [1]
    SCHECK D E, CHOU D R. Optimum locations for exploratory drill holes[J]. International Journal of Mining Engineering, 1983, 1(4): 343-355. doi: 10.1007/BF00881550
    [2]
    HOSSEIN MORSHEDY A, MEMARIAN H. A novel algorithm for designing the layout of additional boreholes[J]. Ore Geology Reviews, 2015, 67: 34-42. doi: 10.1016/j.oregeorev.2014.11.012
    [3]
    SHURYGIN A M. The probability of finding deposits and some optimal search grids[J]. Journal of the International Association for Mathematical Geology, 1976, 8(3): 323-330. doi: 10.1007/BF01029276
    [4]
    宣腾. 基于克里金法的地质勘探位置分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    XUAN Teng. Location Analysis of The Site Investigation Using Kriging[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [5]
    LIU Y H, JOURNEL A. Improving sequential simulation with a structured path guided by information content[J]. Mathematical Geology, 2004, 36(8): 945-964. doi: 10.1023/B:MATG.0000048800.72104.de
    [6]
    DREW L J. Pattern drilling exploration: optimum pattern types and hole spacings when searching for elliptical shaped targets[J]. Journal of the International Association for Mathematical Geology, 1979, 11(2): 223-254. doi: 10.1007/BF01028966
    [7]
    SHI C, WANG Y. Nonparametric and data-driven interpolation of subsurface soil stratigraphy from limited data using multiple point statistics[J]. Canadian Geotechnical Journal, 2021, 58(2): 261-280. doi: 10.1139/cgj-2019-0843
    [8]
    SHI C, WANG Y. Data-driven sequential development of geological cross-sections along tunnel trajectory[J]. Acta Geotechnica, 2023, 18(4): 1739-1754. doi: 10.1007/s11440-022-01707-1
    [9]
    邓志平, 李典庆, 祁小辉, 等. 基于广义耦合马尔可夫链的地层变异性模拟方法[J]. 岩土工程学报, 2018, 40(11): 2041-2050. doi: 10.11779/CJGE201811010

    DENG Zhiping, LI Dianqing, QI Xiaohui, et al. Simulation of geological uncertainty using modified generalized coupled Markov chain[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2041-2050. (in Chinese) doi: 10.11779/CJGE201811010
    [10]
    ZHANG J Z, HUANG H W, ZHANG D M, et al. Quantitative evaluation of geological uncertainty and its influence on tunnel structural performance using improved coupled Markov chain[J]. Acta Geotechnica, 2021, 16(11): 3709-3724. doi: 10.1007/s11440-021-01287-6
    [11]
    SHI C, WANG Y. Machine learning of three-dimensional subsurface geological model for a reclamation site in Hong Kong[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(12): 504. doi: 10.1007/s10064-022-03009-y
    [12]
    李希元, 崔健, 胡望水, 等. 基于多源地球物理数据的机器学习方法在地质体分类中的应用: 以黑龙江多宝山矿集区为例[J]. 地球物理学报, 2022, 65(9): 3634-3649.

    LI Xiyuan, CUI Jian, HU Wangshui, et al. Application of machine learning method based on multi-source geophysical data to geological body classification—a case study of Duobaoshan ore concentration area (Heilongjiang, China)[J]. Chinese Journal of Geophysics, 2022, 65(9): 3634-3649. (in Chinese)
    [13]
    KRUMBEIN W C. Statistical models in sedimentology1[J]. Sedimentology, 1968, 10(1): 7–23. doi: 10.1111/j.1365-3091.1968.tb01908.x
    [14]
    ELFEKI A M M, DEKKING F M. Modelling subsurface heterogeneity by coupled Markov chains: directional dependency, walther's law and entropy[J]. Geotechnical & Geological Engineering, 2005, 23(6): 721-756.
    [15]
    CHESSA A G. A Markov chain model for subsurface characterization: theory and applications[J]. Mathematical Geology, 2006, 38(4): 503-505. doi: 10.1007/s11004-006-9037-9
    [16]
    LI J H, CAI Y M, LI X Y, et al. Simulating realistic geological stratigraphy using direction-dependent coupled Markov chain model[J]. Computers and Geotechnics, 2019, 115: 103147. doi: 10.1016/j.compgeo.2019.103147
    [17]
    ZENG Z Q, CAI Y C, WU J B. Local coupled Markov chain model for simulating varied stratigraphy[J]. Computers and Geotechnics, 2024, 167: 106064. doi: 10.1016/j.compgeo.2023.106064
    [18]
    程利力, 陈健, 陈睿, 等. 基于二维马尔可夫链的武汉长江公铁隧道地层识别[J]. 土木工程与管理学报, 2021, 38(1): 169-174, 182.

    CHENG Lili, CHEN Jian, CHEN Rui, et al. Stratigraphic identification of Wuhan Yangtze River railway tunnel based on two-dimensional Markov chain[J]. Journal of Civil Engineering and Management, 2021, 38(1): 169-174, 182. (in Chinese)
    [19]
    ZHANG J Z, LIU Z Q, ZHANG D M, et al. Improved coupled Markov chain method for simulating geological uncertainty[J]. Engineering Geology, 2022, 298: 106539. doi: 10.1016/j.enggeo.2022.106539
    [20]
    丁文峰, 韩昊宇, 王协康, 等. 基于信息熵理论的黄土高原小流域雨量站网优化[J]. 工程科学与技术, 2022, 54(2): 113-121.

    DING Wenfeng, HAN Haoyu, WANG Xiekang, et al. Rainfall networks optimization in small catchment of Loess Plateau based on information entropy[J]. Advanced Engineering Sciences, 2022, 54(2): 113-121. (in Chinese)
  • Cited by

    Periodical cited type(3)

    1. 范文晓. 南阳膨胀土浸水变形特性及微观结构研究. 建筑科学. 2025(01): 126-135 .
    2. 李从安,许晓彤,沈登乐,王卫,胡波. 弱膨胀土三轴膨胀模型及其应用. 长江科学院院报. 2023(10): 137-141 .
    3. 叶云雪,邹维列,韩仲,谢鹏,张俊峰,徐永福. 考虑初始状态影响的膨胀土一维膨胀特性研究. 岩土工程学报. 2021(08): 1518-1525 . 本站查看

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return