Citation: | LIANG Fayun, WEI Shengming, CHEN Ke, YUAN Qiang, YAN Jingya, GU Xiaoqiang. Method for determining nonlinear foundation reaction of shield tunnels based on the UH model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 284-295. DOI: 10.11779/CJGE20230919 |
[1] |
邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043. doi: 10.11779/CJGE201606009
SHAO Hua, HUANG Hongwei, ZHANG Dongming, et al. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043. (in Chinese) doi: 10.11779/CJGE201606009
|
[2] |
王如路, 袁强, 梁发云, 等. 道路填土引发软土地铁盾构隧道变形案例及整治技术[J]. 岩土工程学报, 2023, 45(1): 112-121.
WANG Rulu, YUAN Qiang, LIANG Fayun, et al. Case study and treatment technology for deformed shield tunnel in soft soils induced by road construction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 112-121. (in Chinese)
|
[3] |
葛世平, 谢东武, 丁文其. 大面积加卸载对软土地铁隧道的影响[J]. 土木工程学报, 2011, 44(增刊2): 127-130.
GE Shiping, XIE Dongwu, DING Wenqi. Effects of loading and unloading large-scale area load acting on soft soil metro line[J]. China Civil Engineering Journal, 2011, 44(S2): 127-130. (in Chinese)
|
[4] |
高广运, 高盟, 杨成斌, 等. 基坑施工对运营地铁隧道的变形影响及控制研究[J]. 岩土工程学报, 2010, 32(3): 453-459. http://cge.nhri.cn/article/id/12402
GAO Guangyun, GAO Meng, YANG Chengbin, et al. Influence of deep excavation on deformation of operating metro tunnels and countermeasures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 453-459. (in Chinese) http://cge.nhri.cn/article/id/12402
|
[5] |
HUANG H W, ZHANG D M. Resilience analysis of shield tunnel lining under extreme surcharge: characterization and field application[J]. Tunnelling and Underground Space Technology, 2016, 51: 301-312. doi: 10.1016/j.tust.2015.10.044
|
[6] |
ZHANG D M, PHOON K K, HU Q F, et al. Nonlinear subgrade reaction solution for circular tunnel lining design based on mobilized strength of undrained clay[J]. Canadian Geotechnical Journal, 2018, 55(2): 155-170. doi: 10.1139/cgj-2017-0006
|
[7] |
朱合华, 崔茂玉, 杨金松. 盾构衬砌管片的设计模型与荷载分布的研究[J]. 岩土工程学报, 2000, 22(2): 190-194. doi: 10.3321/j.issn:1000-4548.2000.02.009
ZHU Hehua, CUI Maoyu, YANG Jinsong. Design model for shield lining segments and distribution of load[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 190-194. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.02.009
|
[8] |
Japan Society of Civil Engineers. Standard specifications for tunneling-2006: shield tunnels[S]. Japan Society of Civil Engineers, 2007.
|
[9] |
上海市住房和城乡建设管理委员会. DGJ08-11-2018地基基础设计规范[S]. 上海: 同济大学出版社, 2019.
Management Committee of Housing and Urban-Rural Development of Shanghai. DGJ08-11-2018 Foundation design code[S]. Shanghai: Tongji University Press, 2019. (in Chinese)
|
[10] |
MUIR WOOD A M. The circular tunnel in elastic ground[J]. Géotechnique, 1975, 25(1): 115-127. doi: 10.1680/geot.1975.25.1.115
|
[11] |
VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753-756. doi: 10.1680/geot.1996.46.4.753
|
[12] |
ZHANG D M, HUANG H W, PHOON K K, et al. A modified solution of radial subgrade modulus for a circular tunnel in elastic ground[J]. Soils and Foundations, 2014, 54(2): 225-232. doi: 10.1016/j.sandf.2014.02.012
|
[13] |
SHEN S L, WU H N, CUI Y J, et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J]. Tunnelling and Underground Space Technology, 2014, 40: 309-323. doi: 10.1016/j.tust.2013.10.013
|
[14] |
ORESTE P P. A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports[J]. Tunnelling and Underground Space Technology, 2007, 22(2): 185-205. doi: 10.1016/j.tust.2006.05.002
|
[15] |
DO N A, DIAS D, ORESTE P, et al. The behaviour of the segmental tunnel lining studied by the hyperstatic reaction method[J]. European Journal of Environmental and Civil Engineering, 2014: 1-22.
|
[16] |
BOLTON M D, POWRIE W. Behaviour of diaphragm walls in clay prior to collapse[J]. Géotechnique, 1988, 38(2): 167-189. doi: 10.1680/geot.1988.38.2.167
|
[17] |
OSMAN A S, BOLTON M D, MAIR R J. Predicting 2D ground movements around tunnels in undrained clay[J]. Géotechnique, 2006, 56(9): 597-604. doi: 10.1680/geot.2006.56.9.597
|
[18] |
张东明, 张艳杰, 黄宏伟. 基于地层损失的盾构隧道土压力非线性解析方法[J]. 中国公路学报, 2017, 30(8): 82-90.
ZHANG Dongming, ZHANG Yanjie, HUANG Hongwei. Nonlinear analytical solution of earth pressure on shield tunnel linings considering ground volume loss[J]. China Journal of Highway and Transport, 2017, 30(8): 82-90. (in Chinese)
|
[19] |
YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
|
[20] |
MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95.
|
[21] |
徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.
XU Zhonghua. Study on Deformation Behavior of Deep Foundation Pit Combined with Supporting Structure and Main Underground Structure in Shanghai Area[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)
|
[22] |
POTTS D M, ZDRAVKOPVIC L. Finite Element Analysis in Geotechnical Engineering: Theory[M]. London: Thomas Telford, 1999.
|
[23] |
OSMAN A S, BOLTON M D. A new design method for retaining walls in clay[J]. Canadian Geotechnical Journal, 2004, 41(3): 451-466.
|
[24] |
ZHENG G, WANG F J, NIE D Q, et al. Mobilizable strength design for multibench retained excavation[J]. Mathematical Problems in Engineering, 2018, 2018: 8402601.
|
[25] |
城市轨道设计规范: DG/TJ 08—109—2017[S]. 上海: 同济大学出版社, 2017.
Urban Rail Transit Design Standard: DG/TJ—08—109—2017[S]. Shanghai: Tongji University Press, 2017. (in Chinese)
|
[26] |
地铁设计规范: GB 50157—2013[S]. 北京: 中国建筑工业出版社, 2014.
Code for Design of Metro: GB 50157—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
|
[27] |
魏道垛, 杨熙章. 上海软土的静止侧压力系数K0的分布和变化规律的研究[J]. 大坝观测与土工测试, 1988(3): 36-43.
WEI Daoduo, YANG Xizhang. Variation of K0-values of Shanghai soft soils[J]. Hydropower and Pumped Storage, 1988(3): 36-43. (in Chinese)
|
[28] |
武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.
WU Chaojun. Sedimentary Environment and Physical and Mechanical Properties of Shallow Soil Layers in Shanghai[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
|
[29] |
DO N A, DIAS D, ORESTE P, et al. A new numerical approach to the hyperstatic reaction method for segmental tunnel linings[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(15): 1617-1632.
|
[30] |
朱合华, 黄伯麒, 李晓军, 等. 盾构衬砌管片接头内力–变形统一模型及试验分析[J]. 岩土工程学报, 2014, 36(12): 2153-2160. doi: 10.11779/CJGE201412001
ZHU Hehua, HUANG Boqi, LI Xiaojun, et al. Unified model for internal force and deformation of shield segment joints and experimental analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2153-2160. (in Chinese) doi: 10.11779/CJGE201412001
|
[31] |
ARNAU O, MOLINS C. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test: Part 2 Numerical simulation[J]. Tunnelling and Underground Space Technology, 2011, 26(6): 778-788.
|
[32] |
HUANG H W, ZHANG Y J, ZHANG D M, et al. Field data-based probabilistic assessment on degradation of deformational performance for shield tunnel in soft clay[J]. Tunnelling and Underground Space Technology, 2017, 67: 107-119.
|