• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Fayun, WEI Shengming, CHEN Ke, YUAN Qiang, YAN Jingya, GU Xiaoqiang. Method for determining nonlinear foundation reaction of shield tunnels based on the UH model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 284-295. DOI: 10.11779/CJGE20230919
Citation: LIANG Fayun, WEI Shengming, CHEN Ke, YUAN Qiang, YAN Jingya, GU Xiaoqiang. Method for determining nonlinear foundation reaction of shield tunnels based on the UH model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 284-295. DOI: 10.11779/CJGE20230919

Method for determining nonlinear foundation reaction of shield tunnels based on the UH model

More Information
  • Received Date: September 17, 2023
  • Available Online: June 12, 2024
  • To accurately capture its nonlinear characteristics under surcharge, an approach for the subgrade reaction of shield tunnels is implemented on the basis of the soil strength design method (MSD method) and the unified hardening model (UH model). The practical simplified version is proposed by conducting the description of the mechanical properties of the entire soil zone with constitutive curves of soils at the height of tunnel center. Furthermore, using the statistically derived UH constitutive parameters for soil layers ④ and ⑤1 in Shanghai, the subgrade reactions for both soil layers are predicted and fitted by using the hyperbolic curve function. After the secondary fitting process is conducted to obtain the initial stiffness and the ultimate strength in relation to the parameters of the constitutive model, the functions for subgrade reactions of shield tunnels in Shanghai are established. Eventually, the multifactorial evaluation of shield tunnels in Shanghai under surcharge conditions is performed, confirming the capacity of the developed formulas for predicting the large deformation of tunnels under surcharge. The convergence deformation of the tunnels under surcharge is more sensitive to the initial stiffness of subgrade reactions, governed by various soil parameters such as κ/λ and confining pressure, than to its ultimate strength.
  • [1]
    邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043. doi: 10.11779/CJGE201606009

    SHAO Hua, HUANG Hongwei, ZHANG Dongming, et al. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043. (in Chinese) doi: 10.11779/CJGE201606009
    [2]
    王如路, 袁强, 梁发云, 等. 道路填土引发软土地铁盾构隧道变形案例及整治技术[J]. 岩土工程学报, 2023, 45(1): 112-121.

    WANG Rulu, YUAN Qiang, LIANG Fayun, et al. Case study and treatment technology for deformed shield tunnel in soft soils induced by road construction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 112-121. (in Chinese)
    [3]
    葛世平, 谢东武, 丁文其. 大面积加卸载对软土地铁隧道的影响[J]. 土木工程学报, 2011, 44(增刊2): 127-130.

    GE Shiping, XIE Dongwu, DING Wenqi. Effects of loading and unloading large-scale area load acting on soft soil metro line[J]. China Civil Engineering Journal, 2011, 44(S2): 127-130. (in Chinese)
    [4]
    高广运, 高盟, 杨成斌, 等. 基坑施工对运营地铁隧道的变形影响及控制研究[J]. 岩土工程学报, 2010, 32(3): 453-459. http://cge.nhri.cn/article/id/12402

    GAO Guangyun, GAO Meng, YANG Chengbin, et al. Influence of deep excavation on deformation of operating metro tunnels and countermeasures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 453-459. (in Chinese) http://cge.nhri.cn/article/id/12402
    [5]
    HUANG H W, ZHANG D M. Resilience analysis of shield tunnel lining under extreme surcharge: characterization and field application[J]. Tunnelling and Underground Space Technology, 2016, 51: 301-312. doi: 10.1016/j.tust.2015.10.044
    [6]
    ZHANG D M, PHOON K K, HU Q F, et al. Nonlinear subgrade reaction solution for circular tunnel lining design based on mobilized strength of undrained clay[J]. Canadian Geotechnical Journal, 2018, 55(2): 155-170. doi: 10.1139/cgj-2017-0006
    [7]
    朱合华, 崔茂玉, 杨金松. 盾构衬砌管片的设计模型与荷载分布的研究[J]. 岩土工程学报, 2000, 22(2): 190-194. doi: 10.3321/j.issn:1000-4548.2000.02.009

    ZHU Hehua, CUI Maoyu, YANG Jinsong. Design model for shield lining segments and distribution of load[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 190-194. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.02.009
    [8]
    Japan Society of Civil Engineers. Standard specifications for tunneling-2006: shield tunnels[S]. Japan Society of Civil Engineers, 2007.
    [9]
    上海市住房和城乡建设管理委员会. DGJ08-11-2018地基基础设计规范[S]. 上海: 同济大学出版社, 2019.

    Management Committee of Housing and Urban-Rural Development of Shanghai. DGJ08-11-2018 Foundation design code[S]. Shanghai: Tongji University Press, 2019. (in Chinese)
    [10]
    MUIR WOOD A M. The circular tunnel in elastic ground[J]. Géotechnique, 1975, 25(1): 115-127. doi: 10.1680/geot.1975.25.1.115
    [11]
    VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753-756. doi: 10.1680/geot.1996.46.4.753
    [12]
    ZHANG D M, HUANG H W, PHOON K K, et al. A modified solution of radial subgrade modulus for a circular tunnel in elastic ground[J]. Soils and Foundations, 2014, 54(2): 225-232. doi: 10.1016/j.sandf.2014.02.012
    [13]
    SHEN S L, WU H N, CUI Y J, et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J]. Tunnelling and Underground Space Technology, 2014, 40: 309-323. doi: 10.1016/j.tust.2013.10.013
    [14]
    ORESTE P P. A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports[J]. Tunnelling and Underground Space Technology, 2007, 22(2): 185-205. doi: 10.1016/j.tust.2006.05.002
    [15]
    DO N A, DIAS D, ORESTE P, et al. The behaviour of the segmental tunnel lining studied by the hyperstatic reaction method[J]. European Journal of Environmental and Civil Engineering, 2014: 1-22.
    [16]
    BOLTON M D, POWRIE W. Behaviour of diaphragm walls in clay prior to collapse[J]. Géotechnique, 1988, 38(2): 167-189. doi: 10.1680/geot.1988.38.2.167
    [17]
    OSMAN A S, BOLTON M D, MAIR R J. Predicting 2D ground movements around tunnels in undrained clay[J]. Géotechnique, 2006, 56(9): 597-604. doi: 10.1680/geot.2006.56.9.597
    [18]
    张东明, 张艳杰, 黄宏伟. 基于地层损失的盾构隧道土压力非线性解析方法[J]. 中国公路学报, 2017, 30(8): 82-90.

    ZHANG Dongming, ZHANG Yanjie, HUANG Hongwei. Nonlinear analytical solution of earth pressure on shield tunnel linings considering ground volume loss[J]. China Journal of Highway and Transport, 2017, 30(8): 82-90. (in Chinese)
    [19]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [20]
    MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95.
    [21]
    徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.

    XU Zhonghua. Study on Deformation Behavior of Deep Foundation Pit Combined with Supporting Structure and Main Underground Structure in Shanghai Area[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)
    [22]
    POTTS D M, ZDRAVKOPVIC L. Finite Element Analysis in Geotechnical Engineering: Theory[M]. London: Thomas Telford, 1999.
    [23]
    OSMAN A S, BOLTON M D. A new design method for retaining walls in clay[J]. Canadian Geotechnical Journal, 2004, 41(3): 451-466.
    [24]
    ZHENG G, WANG F J, NIE D Q, et al. Mobilizable strength design for multibench retained excavation[J]. Mathematical Problems in Engineering, 2018, 2018: 8402601.
    [25]
    城市轨道设计规范: DG/TJ 08—109—2017[S]. 上海: 同济大学出版社, 2017.

    Urban Rail Transit Design Standard: DG/TJ—08—109—2017[S]. Shanghai: Tongji University Press, 2017. (in Chinese)
    [26]
    地铁设计规范: GB 50157—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Code for Design of Metro: GB 50157—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [27]
    魏道垛, 杨熙章. 上海软土的静止侧压力系数K0的分布和变化规律的研究[J]. 大坝观测与土工测试, 1988(3): 36-43.

    WEI Daoduo, YANG Xizhang. Variation of K0-values of Shanghai soft soils[J]. Hydropower and Pumped Storage, 1988(3): 36-43. (in Chinese)
    [28]
    武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.

    WU Chaojun. Sedimentary Environment and Physical and Mechanical Properties of Shallow Soil Layers in Shanghai[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
    [29]
    DO N A, DIAS D, ORESTE P, et al. A new numerical approach to the hyperstatic reaction method for segmental tunnel linings[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(15): 1617-1632.
    [30]
    朱合华, 黄伯麒, 李晓军, 等. 盾构衬砌管片接头内力–变形统一模型及试验分析[J]. 岩土工程学报, 2014, 36(12): 2153-2160. doi: 10.11779/CJGE201412001

    ZHU Hehua, HUANG Boqi, LI Xiaojun, et al. Unified model for internal force and deformation of shield segment joints and experimental analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2153-2160. (in Chinese) doi: 10.11779/CJGE201412001
    [31]
    ARNAU O, MOLINS C. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test: Part 2 Numerical simulation[J]. Tunnelling and Underground Space Technology, 2011, 26(6): 778-788.
    [32]
    HUANG H W, ZHANG Y J, ZHANG D M, et al. Field data-based probabilistic assessment on degradation of deformational performance for shield tunnel in soft clay[J]. Tunnelling and Underground Space Technology, 2017, 67: 107-119.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return