• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Wenjing, SUN Gaoge, ZHANG Shuyun. Methane removal efficiency in biochar-methanotroph-clay landfill cover[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2529-2537. DOI: 10.11779/CJGE20230864
Citation: SUN Wenjing, SUN Gaoge, ZHANG Shuyun. Methane removal efficiency in biochar-methanotroph-clay landfill cover[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2529-2537. DOI: 10.11779/CJGE20230864

Methane removal efficiency in biochar-methanotroph-clay landfill cover

More Information
  • Received Date: September 06, 2023
  • Available Online: April 17, 2024
  • The landfill is one of the main sources of methane emissions. The landfill cover is at the top of a landfill as an important solution to reduce methane release. However, the gas closure capability of the conventional landfill cover is so poor that results in prolonged issue of uncontrolled, low-intensity methane emissions and exacerbates the greenhouse effects. In this study, the biochar and methanotroph amendment to clay are proposed to create an eco-friendly landfill cover, biochar-methanotroph-clay (BMC) cover. It is designed to combine the absorbing or oxidizing methane capabilities of biochar and methanotroph, aiming for more economical, sustainable and effective methane removal approach. By adopting chemical oxidation aging method, water film transfer method and other methods, a total of 48 groups of experiments are conducted to stimulate the effects of biochar content, oxidation aging times and methane-filled days to the methane removal efficiency of the BMC. The results indicate that the methane removal efficiency increases first and then decreases with the increase of the biochar content. It increases gradually with the increase of the oxidation aging times and methane-filled days. After 6 times of oxidation aging and 30 days of breeding methanotroph, the BMC with the biochar content of 5% shows the highest methane removal capacity amounting to 14.05 mg/g, which is more than twice the number of the clay. These results are expected to offer insights for the design, construction and maintenance of the BMC landfill cover system.
  • [1]
    贠娟莉, 王艳芬, 张洪勋. 好氧甲烷氧化菌生态学研究进展[J]. 生态学报, 2013, 33(21): 6774-6785.

    YUN Juanli, WANG Yanfen, ZHANG Hongxun. Ecology of aerobic methane oxidizing bacteria (methanotrophs)[J]. Acta Ecologica Sinica, 2013, 33(21): 6774-6785. (in Chinese)
    [2]
    PACHAURI R K, ALLEN M R. Climate Change 2014: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva: IPCC, 2014.
    [3]
    孙文静, 孔溢, 陈学萍, 等. 垃圾填埋场覆层甲烷生物减排技术综述[J]. 高校地质学报, 2021, 27(6): 775-783.

    SUN Wenjing, KONG Yi, CHEN Xueping, et al. Research progress of methane bio-mitigation technology in landfill cover[J]. Geological Journal of China Universities, 2021, 27(6): 775-783. (in Chinese)
    [4]
    TVEIT A T, HESTNES A G, ROBINSON S L, et al. Widespread soil bacterium that oxidizes atmospheric methane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8515-8524.
    [5]
    KNIEF C. Diversity of methane cycling microorganisms in soils and their relation to oxygen[J]. Current Issues in Molecular Biology, 2019, 33: 23-56.
    [6]
    严程, 梅娟, 赵由才. 好氧甲烷氧化菌及其工程应用进展[J]. 生物工程学报, 2022, 38(4): 1322-1338.

    YAN Cheng, MEI Juan, ZHAO Youcai. Engineering application of aerobic methane oxidizing bacteria (methanotrophs): a review[J]. Chinese Journal of Biotechnology, 2022, 38(4): 1322-1338. (in Chinese)
    [7]
    BOECKX P, VAN CLEEMPUT O, VILLARALVO I. Methane emission from a landfill and the methane oxidising capacity of its covering soil[J]. Soil Biology and Biochemistry, 1996, 28(10): 1397-1405.
    [8]
    詹良通, 王勇, 刘凯, 等. 生活垃圾填埋场黄土覆盖层的甲烷氧化能力现场测试和评估[J]. 中国环境科学, 2023, 43(6): 3150-3157.

    ZHAN Liangtong, WANG Yong, LIU Kai, et al. Field test and evaluation of methane oxidation capacity of loess cover in municipal solid waste landfill[J]. China Environmental Science, 2023, 43(6): 3150-3157. (in Chinese)
    [9]
    AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071
    [10]
    安青, 陈德珍, 钦佩, 等. 生物炭活化技术及生物炭催化剂的研究进展[J]. 中国环境科学, 2021, 41(10): 4720-4735.

    AN Qing, CHEN Dezhen, QIN Pei, et al. Research progress of biochar activation technology and biochar catalyst[J]. China Environmental Science, 2021, 41(10): 4720-4735. (in Chinese)
    [11]
    江超, 赵仲辉, 刘秉岳. 生物炭吸附填埋场温室气体试验[J]. 湖北农业科学, 2018, 57(20): 35-39.

    JIANG Chao, ZHAO Zhonghui, LIU Bingyue. Laboratory study on adsorption capacity of greenhouse gas in biochar cover[J]. Hubei Agricultural Sciences, 2018, 57(20): 35-39. (in Chinese)
    [12]
    JAAFAR N M, CLODE P L, ABBOTT L K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil[J]. Journal of Integrative Agriculture, 2014, 13(3): 483-490. doi: 10.1016/S2095-3119(13)60703-0
    [13]
    李金文, 顾凯, 唐朝生, 等. 生物炭对土体物理化学性质影响的研究进展[J]. 浙江大学学报(工学版), 2018, 52(1): 192-206.

    LI Jinwen, GU Kai, TANG Chaosheng, et al. Advances in effects of biochar on physical and chemical properties of soils[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(1): 192-206. (in Chinese)
    [14]
    LYU H H, TANG J C, CUI M K, et al. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: synthesis, applications, and mechanisms[J]. Chemosphere, 2020, 246: 125609. doi: 10.1016/j.chemosphere.2019.125609
    [15]
    HUANG D D, BAI X Y, WANG Q, et al. Validation and optimization of key biochar properties through iron modification for improving the methane oxidation capacity of landfill cover soil[J]. Science of the Total Environment, 2021, 793: 148551. doi: 10.1016/j.scitotenv.2021.148551
    [16]
    唐伟, 郭悦, 吴景贵, 等. 老化的生物质炭性质变化及对菲吸持的影响[J]. 环境科学, 2014, 35(7): 2604-2611.

    TANG Wei, GUO Yue, WU Jinggui, et al. Structural changes of aged biochar and the influence on phenanthrene adsorption[J]. Environmental Science, 2014, 35(7): 2604-2611. (in Chinese)
    [17]
    刘文慧, 王昱璇, 陈丹丹, 等. 老化作用对生物炭理化特性的影响[J]. 工程热物理学报, 2021, 42(6): 1575-1582.

    LIU Wenhui, WANG Yuxuan, CHEN Dandan, et al. Effect of aging on physicochemical properties of biochars[J]. Journal of Engineering Thermophysics, 2021, 42(6): 1575-1582. (in Chinese)
    [18]
    龙於洋, 方圆, 廖燕, 等. 甲烷氧化菌在填埋场覆盖层的工程应用(Ⅰ): 分离与筛选[J]. 环境科学学报, 2015, 35(7): 2210-2216.

    LONG Yuyang, FANG Yuan, LIAO Yan, et al. Engineering application of methanotrophs in landfill coverlayer(Ⅰ): isolation and characterization[J]. Acta Scientiae Circumstantiae, 2015, 35(7): 2210-2216. (in Chinese)
    [19]
    MERUVU H, WU H, JIAO Z Y, et al. From nature to nurture: essence and methods to isolate robust methanotrophic bacteria[J]. Synthetic and Systems Biotechnology, 2020, 5(3): 173-178. doi: 10.1016/j.synbio.2020.06.007
    [20]
    李明玉, 孙文静. 黏土掺入生物炭后的持水特性及其影响机制[J]. 岩土力学, 2019, 40(12): 4722-4730, 4739.

    LI Mingyu, SUN Wenjing. Water retention behaviour of biochar-amended clay and its influencing mechanism[J]. Rock and Soil Mechanics, 2019, 40(12): 4722-4730, 4739. (in Chinese)
    [21]
    李明玉, 郭进军, 张艳星. 生物炭改性黏土的渗水渗气特性及其函数关系[J]. 农业工程学报, 2023, 39(16): 54-61.

    LI Mingyu, GUO Jinjun, ZHANG Yanxing. Water and gas permeability characteristics and functional relationships of biochar-amended clay[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(16): 54-61. (in Chinese)
    [22]
    SHIN J, PARK D, HONG S, et al. Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L) production[J]. Environmental Pollution, 2021, 285: 117457. doi: 10.1016/j.envpol.2021.117457
    [23]
    江超, 赵仲辉, 刘秉岳. 生物炭改性土的甲烷吸附试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 116-120. doi: 10.11779/CJGE2017S1023

    JIANG Chao, ZHAO Zhonghui, LIU Bingyue. Experimental study on methane adsorption of biochar modified soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 116-120. (in Chinese) doi: 10.11779/CJGE2017S1023
    [24]
    XU K, SUN W J, LIU X Y, et al. Methane reduction efficiency of biochar-methanotroph-amended clay[J]. Arabian Journal of Geosciences, 2022, 15(9): 909.
    [25]
    张晓莹, 陈苏, 刘颖, 等. 生物炭老化及其对重金属吸附固定的影响研究进展[J]. 农业资源与环境学报, 2023, 40(4): 852-863.

    ZHANG Xiaoying, CHEN Su, LIU Ying, et al. Research progress in biochar aging and its effect on the adsorption and fixation of heavy metals[J]. Journal of Agricultural Resources and Environment, 2023, 40(4): 852-863. (in Chinese)
    [26]
    CROSS A, SOHI S P. A method for screening the relative long-term stability of biochar[J]. GCB Bioenergy, 2013, 5(2): 215-220.
    [27]
    MALYAN S K, BHATIA A, KUMAR A, et al. Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors[J]. The Science of the Total Environment, 2016, 572: 874-896.
    [28]
    TISDALL J M, NELSON S E, WILKINSON K G, et al. Stabilisation of soil against wind erosion by six saprotrophic fungi[J]. Soil Biology and Biochemistry, 2012, 50: 134-141.
    [29]
    陈波, 孙德安, 高游, 等. 上海软黏土的孔径分布试验研究[J]. 岩土力学, 2017, 38(9): 2523-2530.

    CHEN Bo, SUN Dean, GAO You, et al. Experimental study of pore-size distribution of Shanghai soft clay[J]. Rock and Soil Mechanics, 2017, 38(9): 2523-2530. (in Chinese)
    [30]
    KE Y X, ZHANG F X, ZHANG Z L, et al. Effect of combined aging treatment on biochar adsorption and speciation distribution for Cd(Ⅱ)[J]. Science of the Total Environment, 2023, 867: 161593.
    [31]
    WANG Z, GENG C X, BIAN Y, et al. Effect of oxidative aging of biochar on relative distribution of competitive adsorption mechanism of Cd2+ and Pb2[J]. Scientific Reports, 2022, 12(1): 11308.
    [32]
    阿拉萨, 高广磊, 丁国栋, 等. 土壤微生物膜生理生态功能研究进展[J]. 应用生态学报, 2022, 33(7): 1885-1892.

    A Lasa, GAO Guanglei, DING Guodong, et al. Eco-physiological functions of soil microbial biofilms: a review[J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1885-1892. (in Chinese)
    [33]
    居炎飞, 邱明喜, 朱纪康, 等. 我国固沙材料研究进展与应用前景[J]. 干旱区资源与环境, 2019, 33(10): 138-144.

    JU Yanfei, QIU Mingxi, ZHU Jikang, et al. Advances in sand-fixing material research in China and the application prospect[J]. Journal of Arid Land Resources and Environment, 2019, 33(10): 138-144. (in Chinese)
    [34]
    SUN W J, LI M Y, ZHANG W J, et al. Saturated permeability behavior of biochar-amended clay[J]. Journal of Soils and Sediments, 2020, 20(11): 3875-3883.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return