• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FU Zhongzhi, WANG Li'an, CHEN Jinyi, ZHANG Yijiang. Constitutive model for interface between concrete slab and rockfill and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2305-2313. DOI: 10.11779/CJGE20230758
Citation: FU Zhongzhi, WANG Li'an, CHEN Jinyi, ZHANG Yijiang. Constitutive model for interface between concrete slab and rockfill and its application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2305-2313. DOI: 10.11779/CJGE20230758

Constitutive model for interface between concrete slab and rockfill and its application

More Information
  • Received Date: August 08, 2023
  • Available Online: January 11, 2024
  • Concrete slabs play a crucial role in the seepage controlling system of concrete-faced dams. The stress and deformation behavior of concrete slabs mainly depends on the stress-strain properties of their supporting rockfill materials and the contact behavior of the interfaces between slabs and damming rockfill materials. The interface models are commonly used, in stress and deformation analyses of concrete-faced dams, to reflect the load-transferring mechanism between the concrete slabs and the rockfill materials. Therefore, the reliability of the calculated results depends on the rationality of the interface model used. In this study, the deficiency of the traditional hyperbolic interface model is shown, and a new interface model is proposed. The new model can consider the coupling effects between two shearing directions, and the requirements of shear strength criterion and frame-independence are satisfied. The model uses only a few parameters and is easy to implement in finite element analyses. It is shown by a case study that the compressive failure zones occur in real projects can be simulated by the proposed model, at least in a qualitative manner.
  • [1]
    International Commission on Large Dams. Concrete Face Rockfill Dams, Concepts for Design and Construction[M]. Beijing: China Water Power Press, 2010.
    [2]
    SOBRINHO J A, XAVIER L V, ALBERTONI S C, et al. Performance and concrete face repair at Campos Novos[J]. Hydropower and Dams, 2007, 14(2): 39-42.
    [3]
    YANG Z Y, ZHOU J P, WANG F Q. Technical Progress of High Concrete Face Rockfill Dam. [C]// Proceedings of 2nd International Symposium on Rockfill Dams. Brazil: Rio de Janeiro, 2011.
    [4]
    贾金生, 郦能惠, 徐泽平, 等. 高混凝土面板坝安全关键技术研究[M]. 北京: 中国水利水电出版社, 2014.

    JIA Jinsheng, LI Nenghui, XU Zeping, et al. Study on Key Technology for the Safety of High CFRDs[M]. Beijing: China Water & Power Press, 2014. (in Chinese
    [5]
    徐泽平. 混凝土面板堆石坝关键技术与研究进展[J]. 水利学报, 2019, 50(1): 62-74.

    XU Zeping. Research progresses and key technologies of CFRD construction[J]. Journal of Hydraulic Engineering, 2019, 50(1): 62-74. (in Chinese)
    [6]
    程展林, 姜景山, 丁红顺, 等. 粗粒土非线性剪胀模型研究[J]. 岩土工程学报, 2010, 32(3): 460-467. http://cge.nhri.cn/article/id/12415

    CHENG Zhanlin, JIANG Jingshan, DING Hongshun, et al. Nonlinear dilatancy model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 460-467. (in Chinese) http://cge.nhri.cn/article/id/12415
    [7]
    沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.

    SHEN Zhujiang. Theoretical Soil Mechaics[M]. Beijing: China Water Power Press, 2000. (in Chinese)
    [8]
    XIAO Y, LIU H L, YANG G, et al. A constitutive model for the state-dependent behaviors of rockfill material considering particle breakage[J]. Science China Technological Sciences, 2014, 57(8): 1636-1646. doi: 10.1007/s11431-014-5601-6
    [9]
    FU Z Z, CHEN S S, LIU S H. Hypoplastic constitutive modelling of the wetting induced creep of rockfill materials[J]. Science China Technological Sciences, 2012, 55(7): 2066-2082. doi: 10.1007/s11431-012-4835-4
    [10]
    GOODMAN R E, TAYLOR R L, BREKKE T L. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(3): 637-659. doi: 10.1061/JSFEAQ.0001133
    [11]
    WAYNE C G, DUNCAN J M. Finite element analyses of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1673. doi: 10.1061/JSFEAQ.0001713
    [12]
    顾淦臣, 束一鸣, 沈长松. 土石坝工程经验与创新[M]. 北京: 中国电力出版社, 2004.

    GU Ganchen, SHU Yiming, SHEN Changsong. Experience and Innovation of Earth and Rock Dam Engineering[M]. Beijing: China Electric Power Press, 2004. (in Chinese)
    [13]
    刘京茂. 堆石料和接触面弹塑性本构模型及其在面板堆石坝中的应用研究[D]. 大连: 大连理工大学, 2015.

    LIU Jingmao. Elasto-plastic Constitutive Models of Rockfill Material and Soil-structure Interface and Their Applications on Concrete-faced Rockfiil Dam[D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
    [14]
    ZHANG G, ZHANG J M. Unified modeling of monotonic and cyclic behavior of interface between structure and gravelly soil[J]. Soils and Foundations, 2008, 48(2): 231-245. doi: 10.3208/sandf.48.231
    [15]
    HU L M, PU J L. Testing and modeling of soil-structure interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 851-860. doi: 10.1061/(ASCE)1090-0241(2004)130:8(851)
    [16]
    GÓMEZ J E, FLIZ G M, EBELING R M. Extended hyperbolic model for sand-to-concrete interfaces[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 993-1000. doi: 10.1061/(ASCE)1090-0241(2003)129:11(993)
    [17]
    DE GENNARO V, FRANK R. Elasto-plastic analysis of the interface behaviour between granular media and structure[J]. Computers and Geotechnics, 2002, 29(7): 547-572. doi: 10.1016/S0266-352X(02)00010-1
    [18]
    GHIONNA V N, MORTARA G. An elastoplastic model for sand-structure interface behaviour[J]. Geotechnique, 2002, 52(1): 41-50. doi: 10.1680/geot.2002.52.1.41
    [19]
    EVGIN E, FAKHARIAN K. Effect of stress paths on the behaviour of sand-steel interfaces[J]. Canadian Geotechnical Journal, 1996, 33(6): 853-865. doi: 10.1139/t96-116-336
    [20]
    XU B, ZOU D G, LIU H B. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43: 143-154. doi: 10.1016/j.compgeo.2012.03.002
    [21]
    IRGENS F. Continuum Mechanics[M]. Berlin: Springer, 2008.
    [22]
    杨启贵. 水布垭面板堆石坝筑坝技术[M]. 北京: 中国水利水电出版社, 2010.

    YANG Qigui. Dam Construction Technology of Shuibuya Concrete Faced Rockfill Dam[M]. Beijing: China Water Power Press, 2010. (in Chinese)
    [23]
    FU Z Z, CHEN S S, WEI K M. A generalized plasticity model for the stress-strain and creep behavior of rockfill materials[J]. Science China Technological Sciences, 2019, 62(4): 649-664. doi: 10.1007/s11431-018-9362-3
    [24]
    丁林, 段国学, 徐昆振. 水布垭面板堆石坝面板变形及应力应变监测成果分析[J]. 水电与抽水蓄能, 2019, 5(6): 50-57, 86.

    DING Lin, DUAN Guoxue, XU Kunzhen. Analysis on monitoring results of deformation, stress and strain of the face slab of Shuibuya CFRD[J]. Hydropower and Pumped Storage, 2019, 5(6): 50-57, 86. (in Chinese)
  • Related Articles

    [1]LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005
    [2]SHENG Dai-chao, YANG Chao. Discussion of fundamental principles in unsaturated soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 438-470.
    [3]HUANG Mao-song, LIU Yan-hua. Simulation of yield characteristics and principal stress rotation effects of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1667-1675.
    [4]Establishing soil constitutive model based on coupling stress[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1922-1929.
    [5]XIAO Yang, DENG An. Stress-strain analyses of sand-EPS lightweight-bead fills based on elliptic-parabolic yield surfaces model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1467-1471.
    [6]DAI Zihang, ZHOU Ruizhong, LU Caijin. Discussions on yield criterions and stress paths of soils in tests and numerical analyses[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 968-976.
    [7]CAO Yuchun, CHEN Yunmin, HUANG Maosong. One-dimensional nonlinear consolidation analysis of structured natural soft clay subjected to arbitrarily time-dependent construction loading[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 569-574.
    [8]JIANG Yongdong, XIAN Xuefu, XIONG Deguo, ZHOU Fuchun. Study on creep behaviour of sandstone and its mechanical models[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1478-1481.
    [9]JIANG Zhenquan, JI Liangjun. The laboratory study on behavior of permeability of rock along the complete stress-strain path[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 153-156.
    [10]Shen Zhu-jiang. The Rational Form of Stress-Strain Relationship of Soils Based on Elasto-Plasticity Theory[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(2): 11-19.
  • Cited by

    Periodical cited type(27)

    1. 李明昊,李皋,张毅,杨旭,李红涛,冯佳歆,宿腾跃. 位移约束和温度耦合下致密砂岩热诱导微裂纹发育规律研究. 岩石力学与工程学报. 2025(01): 174-184 .
    2. 黄彦华,张坤博,杨圣奇,田文岭,朱振南,印昊,李明旭. 高温后花岗岩微观特征及其对强度影响规律研究. 岩石力学与工程学报. 2025(02): 359-372 .
    3. Wendong Yang,Xiang Zhang,Bingqi Wang,Jun Yao,Pathegama G.Ranjith. Experimental study on the physical and mechanical properties of carbonatite rocks under high confining pressure after thermal treatment. Deep Underground Science and Engineering. 2025(01): 105-118 .
    4. 解经宇,宋继伟,隋建才,赵萌,王韧,曾翀,王建龙. 我国干热花岗岩在不同冷却条件下的力学响应研究进展. 煤田地质与勘探. 2025(03): 126-142 .
    5. 李明耀,李绍金,彭磊,丁宇飞,左建平. 基于相场法的花岗岩弹塑性损伤模型及其细观力学行为研究. 岩石力学与工程学报. 2024(03): 611-622 .
    6. 黄彦华,陶然,韩媛媛,陈笑,罗一鸣,武世岩. 温度对不同孔隙砂岩Ⅰ型断裂韧度影响的试验研究. 采矿与安全工程学报. 2024(02): 430-436 .
    7. 于洪丹,卢琛,陈卫忠,黄嘉玮,李洪辉. 塔木素黏土岩蠕变特性试验与理论研究. 岩石力学与工程学报. 2024(S1): 3578-3585 .
    8. 杨文东,王柄淇,姚军,井文君,张祥. 三轴压缩下实时高温和热处理后碳酸盐岩力学特性的试验研究. 岩石力学与工程学报. 2024(06): 1347-1358 .
    9. 闫程锦,郤保平. 基于颗粒流GBM模型的花岗岩热力损伤特性研究. 水利水电技术(中英文). 2024(05): 170-180 .
    10. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 持续高温作用下花岗岩特征应力及声发射特征试验研究. 岩石力学与工程学报. 2024(07): 1580-1592 .
    11. 贾蓬,钱一锦,毛松泽,徐雪桐,卢佳亮. 晶粒尺寸对花岗岩动态劈裂力学特性及断面粗糙度影响的试验研究. 应用基础与工程科学学报. 2024(05): 1449-1462 .
    12. 夏开宗,刘夏临,林英书,张飞,司志伟,孙朝燚. 基于岩体波速的地下洞室围岩损伤区岩体力学参数取值方法及工程应用. 岩石力学与工程学报. 2024(10): 2414-2429 .
    13. 黄麟淇,刘茂林,王钊炜,郭懿德,司雪峰,李夕兵,李超. 温度影响和真三轴加载下深部圆形隧洞破坏研究(英文). Journal of Central South University. 2024(09): 3119-3141 .
    14. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 热损伤花岗岩能量演化机制及损伤本构模型. 金属矿山. 2024(11): 45-54 .
    15. 黄彦华,陶然,陈笑,罗一鸣,韩媛媛. 高温后花岗岩断裂特性及热裂纹演化规律研究. 岩土工程学报. 2023(04): 739-747 . 本站查看
    16. 张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 .
    17. 李卫,苏海健,蔚立元,刘日成,陈广印. 高温热处理砂岩Ⅰ-Ⅲ混合断裂特性试验研究. 采矿与安全工程学报. 2023(06): 1281-1289 .
    18. 顾冬,马力,罗坤,孙云儒. 水利枢纽工程场地基岩高温三轴压缩渗透力学试验研究. 水利科技与经济. 2022(02): 74-78 .
    19. 张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 .
    20. 李博宇,彭文祥,王李昌,隆威. 温度与化学作用下岩石物理力学性质研究进展. 地质装备. 2022(02): 33-37 .
    21. 刘磊,李睿,秦浩,刘洋. 高温后深部矽卡岩动力学特性及微观破坏机制研究. 岩土工程学报. 2022(06): 1166-1174 . 本站查看
    22. 詹懿德,汪发祥,佘恬钰,沈佳轶,吕庆. 考虑围压效应的块状节理岩体变形破坏数值模拟. 水利水运工程学报. 2022(04): 70-76 .
    23. 李明耀,彭磊,左建平,王智敏,李绍金,薛喜仁. 基于DIP-FFT数值方法的花岗岩多尺度力学特性研究. 岩石力学与工程学报. 2022(11): 2254-2267 .
    24. 王春,熊宏威,舒荣华,薛文越,胡慢谷,张攀龙,雷彬彬. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征. 中国有色金属学报. 2022(09): 2801-2818 .
    25. 梁忠豪,秦楠,孙嘉彬,葛强. 高温作用后黄砂岩三轴压缩及细观破裂机制. 科学技术与工程. 2021(24): 10430-10439 .
    26. 郝宪杰,刘继山,魏英楠,陈泽宇,靳多祥,潘光耀,张谦. 2000m超深煤系储层力学及声发射特征的围压效应. 中南大学学报(自然科学版). 2021(08): 2611-2621 .
    27. 徐文龙,徐鼎平,柳秀洋. 高温热损伤对花岗岩单轴破坏模式和强度的影响研究. 皖西学院学报. 2021(05): 94-99 .

    Other cited types(31)

Catalog

    Article views (413) PDF downloads (102) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return