• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YING Hongwei, XIONG Yifan, LI Binghe, LÜ Wei, CHENG Kang, ZHANG Jinhong. Time-dependent solution for ground settlement induced by excavation in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2041-2050. DOI: 10.11779/CJGE20230727
Citation: YING Hongwei, XIONG Yifan, LI Binghe, LÜ Wei, CHENG Kang, ZHANG Jinhong. Time-dependent solution for ground settlement induced by excavation in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2041-2050. DOI: 10.11779/CJGE20230727

Time-dependent solution for ground settlement induced by excavation in soft clay

More Information
  • Received Date: July 29, 2023
  • Available Online: April 18, 2024
  • By comparing the theoretical and measured results, it is observed that the current methods need to be revised in predicting the ground settlements induced by excavations in soft clay with a significant creep effect. Using the Lame equation and three-parameter viscoelastic foundation model, a time-dependent semi-analytical solution is derived for the ground settlements induced by arbitrary wall deflections. The solution is implemented in two excavations in Hangzhou soft clay, in which the development rules of the ground settlements from the soil excavation to basement construction are analyzed. The results indicate that: (1) The soft soil creep induces the ground settlements independently of the extra wall deflections, leading to a higher ratio of the maximum ground settlement to the maximum wall deflection during soil excavation compared to an excavation in non-soft clay. Furthermore, it results in continuous ground settlements during basement construction. (2) The ground settlements induced by the soft soil creep increase with wall deflections, showing the concave settlement mode. (3) The ratio of the maximum ground settlement to the maximum wall deflection of deep excavations in soft clay is primarily influenced by the creep characteristics of soft soil and construction duration, which appear unaffected by the wall deflections.
  • [1]
    郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36.

    ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. (in Chinese)
    [2]
    王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666.

    WANG Weidong, XU Zhonghua, WANG Jianhua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. (in Chinese)
    [3]
    江晓峰, 刘国彬, 张伟立, 等. 基于实测数据的上海地区超深基坑变形特性研究[J]. 岩土工程学报, 2010 32(增刊2): 570-573.

    JIANG Xiaofeng, LIU Guobin, ZHANG Weili, et al. Deformation characteristics of ultra-deep foundation pit in Shanghai based on measured data[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 570-573. (in Chinese)
    [4]
    TAN Y, WEI B, ZHOU X, et al. Lessons learned from construction of Shanghai metro stations: importance of quick excavation, prompt propping, timely casting, and segmented construction[J]. Journal of Performance of Constructed Facilities, 2015, 29(4): 04014096. doi: 10.1061/(ASCE)CF.1943-5509.0000599
    [5]
    CHENG K, XU R Q, YING H W, et al. Observed performance of a 30.2 m deep-large basement excavation in Hangzhou soft clay[J]. Tunnelling and Underground Space Technology, 2021, 111: 103872. doi: 10.1016/j.tust.2021.103872
    [6]
    MU L L, HUANG M S. Small strain based method for predicting three-dimensional soil displacements induced by braced excavation[J]. Tunnelling and Underground Space Technology, 2016, 52: 12-22. doi: 10.1016/j.tust.2015.11.001
    [7]
    YING H W, CHENG K, LIU S J, et al. An efficient method for evaluating the ground surface settlement of Hangzhou metro deep basement considering the excavation process[J]. Acta Geotechnica, 2022, 17(12): 5759-5771. doi: 10.1007/s11440-022-01549-x
    [8]
    SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301–320. doi: 10.1680/geot.1987.37.3.301
    [9]
    XU K J, POULOS H G. Theoretical study of pile behaviour induced by a soil cut[C]//ISRM International Symposium. ISRM, 2000: ISRM-IS-2000-377.
    [10]
    钱建固, 王伟奇. 刚性挡墙变位诱发墙后地表沉降的理论解析[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2698-2703.

    QIAN Jiangu, WANG Weiqi. Analytical solutions to ground settlement induced by movement of rigid retaining wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2698-2703. (in Chinese)
    [11]
    沈路遥, 钱建固, 张戎泽. 挡墙水平变位诱发地表沉降的简化解析解[J]. 岩土力学, 2016, 37(8): 2293-2298.

    SHEN Luyao, QIAN Jiangu, ZHANG Rongze. A simplified analytical solution for ground settlement induced by horizontal movement of retailing wall[J]. Rock and Soil Mechanics, 2016, 37(8): 2293-2298. (in Chinese)
    [12]
    胡之锋, 陈健, 邱岳峰, 等. 挡墙水平变位诱发地表沉降的显式解析解[J]. 岩土力学, 2018, 39(11): 4165-4175.

    HU Zhifeng, CHEN Jian, QIU Yuefeng, et al. Analytical formula for ground settlement induced by horizontal movement of retaining wall[J]. Rock and Soil Mechanics, 2018, 39(11): 4165-4175. (in Chinese)
    [13]
    FAN X Z, PHOON K K, XU C J, et al. Closed-form solution for excavation-induced ground settlement profile in clay[J]. Computers and Geotechnics, 2021, 137: 104266. doi: 10.1016/j.compgeo.2021.104266
    [14]
    MESQUITA A D, CODA H B. An alternative time integration procedure for Boltzmann viscoelasticity: a BEM approach[J]. Computers & Structures, 2001, 79(16): 1487-1496.
    [15]
    MESQUITA A D, CODA H B. A simple Kelvin and Boltzmann viscoelastic analysis of three-dimensional solids by the boundary element method[J]. Engineering Analysis with Boundary Elements, 2003, 27(9): 885-895. doi: 10.1016/S0955-7997(03)00060-2
    [16]
    祝彦知. 桩基础长期沉降与变形的黏弹性分析理论及应用[D]. 上海: 同济大学, 2006.

    ZHU Yanzhi. Viscoelastic Analysis Theory and Application of Long Term Settlement and Deformation of Pile Foundation[D]. Shanghai: Tongji University, 2006. (in Chinese)
    [17]
    FLAMANT A. Sur la répartition des pressions dans un solide rectangulaire chargé transversalement[J]. CR Acad Sci Paris, 1892, 114: 1465-1468.
    [18]
    陈宗基, 康文法. 岩石的封闭应力、蠕变和扩容及本构方程[J]. 岩石力学与工程学报, 1991, 10(4): 299-312.

    CHEN Zongji, KANG Wenfa. On the locked in stress, creep and dilatation of rocks, and the constitutive equations[J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 10(4): 299-312. (in Chinese)
    [19]
    OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767. doi: 10.1139/t93-068
    [20]
    MANA A I, CLOUGH G W. Prediction of movements for braced cuts in clay[J]. Journal of the Geotechnical Engineering Division, 1981, 107(6): 759-777. doi: 10.1061/AJGEB6.0001150
    [21]
    MOORMANN C. Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database[J]. Soils and Foundations, 2004, 44(1): 87-98. doi: 10.3208/sandf.44.87
    [22]
    邓会元, 戴国亮, 邱国阳, 等. 杭州湾淤泥质粉质黏土排水蠕变试验及元件蠕变模型[J]. 东南大学学报(自然科学版), 2021, 51(2): 318-324.

    DENG Huiyuan, DAI Guoliang, QIU Guoyang, et al. Drained creep test and component creep model of soft silty clay in Hangzhou Bay[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(2): 318-324. (in Chinese)
    [23]
    周秋娟, 陈晓平. 侧向卸荷条件下软土典型力学特性试验研究[J]. 岩石力学与工程学报, 2009, 28(11): 2215-2221. doi: 10.3321/j.issn:1000-6915.2009.11.008

    ZHOU Qiujuan, CHEN Xiaoping. Test research on typical mechanical characteristics of soft clay under lateral unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(11): 2215-2221. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.11.008
    [24]
    贾敏才, 赵舜, 张震. 侧向卸荷条件下结构性软黏土蠕变特性试验研究[J]. 西南交通大学学报, 2020, 55(6): 1257-1263.

    JIA Mincai, ZHAO Shun, ZHANG Zhen. Experimental study on creep characteristics of structural soft clay under lateral unloading condition[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1257-1263. (in Chinese)
    [25]
    ZHANG Z G, HUANG M S, ZHANG C P, et al. Time-domain analyses for pile deformation induced by adjacent excavation considering influences of viscoelastic mechanism[J]. Tunnelling and Underground Space Technology, 2019, 85: 392-405. doi: 10.1016/j.tust.2018.12.020
    [26]
    杨敏, 赵锡宏. 分层土中的单桩分析法[J]. 同济大学学报(自然科学版), 1992, 20(4): 421-428.

    YANG Min, ZHAO Xihong. An approach for a single pile in layered soil[J]. Journal of Tongji University (Natural Science), 1992, 20(4): 421-428. (in Chinese)
    [27]
    应宏伟, 孙威, 吕蒙军, 等. 复杂环境下某深厚软土基坑的实测性状研究[J]. 岩土工程学报, 2014, 36(增刊2): 424-430.

    YING Hongwei, SUN Wei, LÜ Mengjun, et al. Measured characteristics of a deep soft soil excavation in complex environment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 424-430. (in Chinese)
  • Cited by

    Periodical cited type(42)

    1. 朱赛楠,殷跃平,铁永波,撒兰鹏,高延超,贺宇,赵慧. 乌蒙山区巨型古滑坡变形特征与复活机理研究——以大关古滑坡为例. 岩土工程学报. 2025(02): 305-314 . 本站查看
    2. 胡贵良,刘文,鄢勇,范雄安,张毅,杜光远,熊皓,王猛,余天彬. 金沙江上游色拉古滑坡复活特征与堵江溃决模拟分析. 地质学报. 2025(02): 602-615 .
    3. 杨豹,赵瑞志,王海波,李晓光,吕钊,赵阳,王梦云. 遥感技术对地质灾害早期识别和动态监测——以昌波乡至羊拉乡段为例. 科学技术与工程. 2024(05): 1823-1836 .
    4. 殷跃平,高少华. 高位远程地质灾害研究:回顾与展望. 中国地质灾害与防治学报. 2024(01): 1-18 .
    5. Yiqiu Yan,Changbao Guo,Yanan Zhang,Zhendong Qiu,Caihong Li,Xue Li. Development and Deformation Characteristics of Large Ancient Landslides in the Intensely Hazardous Xiongba-Sela Section of the Jinsha River, Eastern Tibetan Plateau, China. Journal of Earth Science. 2024(03): 980-997 .
    6. 李林,李涛,何治林,李树建,董健,王彪. 基于试验模拟的滑坡泥石流灾害链风险监测预警. 水土保持通报. 2024(02): 167-175 .
    7. 蒋涛,崔圣华,许向宁,蒙明辉. 四川高位滑坡发育特征及典型地质力学模式. 地质灾害与环境保护. 2024(02): 1-11 .
    8. 李金秋,张永双,任三绍,冉丽娜. 金沙江上游扎马古滑坡复活特征及堵河危险性分析. 水利学报. 2024(04): 481-492 .
    9. 武德宏,郝利娜,严丽华,唐烽顺,郑光. 金沙江滑坡群InSAR探测与形变因素分析. 自然资源遥感. 2024(03): 259-266 .
    10. 冉涛,徐如阁,李奇. 川藏交通廊道怒江段斜坡地质灾害发育特征及主控因素分析. 自然灾害学报. 2024(04): 176-187 .
    11. 徐正宣,林之恒,刘云鹏,聂晓芳,任利,张志龙. 复杂孕灾环境下隧道进口斜坡稳定性分析与评价. 西南交通大学学报. 2024(05): 1068-1077+1085 .
    12. 蒋佳岐,吴中海,黄小龙,黄飞鹏,王世锋. 金沙江干流巨型滑坡发育特征及其形成机理. 地震科学进展. 2024(10): 680-695 .
    13. 郑顺祥,王军,鄢勇,刘文,赵恒,杨钧翔,范雄安,张毅,王猛,余天彬. 金沙江上游沙东滑坡发育特征与堵江溃决预测分析. 水文地质工程地质. 2024(06): 160-170 .
    14. 郭海湘,区歌阳,杨钰莹. 1987—2022年中国自然灾害链研究进展与趋势——基于CiteSpace的计量分析. 安全与环境工程. 2024(06): 118-133 .
    15. 谭银龙,许万忠,曹家菊,罗丹,王本栋,谯立家,周谊. 基于Midas-GTS的三峡库区金鸡岭滑坡成因机制与稳定性分析. 水文地质工程地质. 2023(01): 113-121 .
    16. 牛敏杰,师芸,吕杰,赵侃,石龙龙. 基于SBAS-InSAR技术的广安村滑坡形变监测分析. 地理空间信息. 2023(01): 79-84 .
    17. 王庆芳,郑志军,董继红,余天彬,刘文,黄细超. 基于多源遥感技术的红层滑坡识别与监测研究. 人民长江. 2023(01): 111-118 .
    18. 高秉海,何毅,张立峰,姚圣,杨旺,陈毅,何旭,赵占骜,陈鹤升. 顾及In SAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例. 岩石力学与工程学报. 2023(02): 450-465 .
    19. 董建军,梅媛,闫斌,刘士乙. 高海拔排土场边坡安全稳定性的PS-InSAR监测. 防灾减灾工程学报. 2023(01): 149-157 .
    20. 贾丽娜,李瑞冬,魏新平. 基于InSAR技术的黄土滑坡及周边斜坡变形识别. 地下水. 2023(02): 121-124 .
    21. 王之栋,唐伟,马志刚,李雨宸,杨本勇,李维庆,李永鑫. 九寨沟地区高位滑坡隐患InSAR-LiDAR早期识别. 测绘通报. 2023(05): 9-15 .
    22. 李沙,张立舟,周成涛,刘洋,陈锐. 基于SBAS-InSAR的大型滑坡变形分区及时序监测研究. 人民长江. 2023(06): 103-111 .
    23. 赵子昕,汪发武,朱国龙,彭星亮. 混杂岩形成机制及非均质力学特性研究进展. 工程地质学报. 2023(03): 796-814 .
    24. 张彦锋,高杨,李滨,朱赛楠. 青藏高原混杂岩带及其地质灾害发育特征分析. 工程地质学报. 2023(03): 981-998 .
    25. 刘印明. 区域降雨型浅层滑坡失稳机理研究. 科技创新与生产力. 2023(07): 30-33 .
    26. 李晓斌,白海军. 高位远程古滑坡既有变形特征和后续变形发展规律研究. 大地测量与地球动力学. 2023(11): 1129-1135 .
    27. 陈兴长,郭晓军,陈慧. 金沙江上游德格-白玉段流域地貌特征及影响因素分析. 第四纪研究. 2023(05): 1269-1281 .
    28. 吴明堂,房云峰,沈月,戴可人,姚义振,陈建强,冯文凯. 基于短基线DInSAR的白鹤滩库区蓄水期滑坡隐患广域快速动态识别. 遥感技术与应用. 2023(05): 1054-1061 .
    29. 包馨,张瑞,刘安梦云,王婷,向卫,刘国祥. 联合升降轨时序InSAR的金沙江滑坡群隐患识别. 北京理工大学学报. 2023(11): 1135-1145 .
    30. 刘媛媛,陈人杰,陈能辉. 西藏色拉滑坡时序InSAR二维形变反演与预测. 北京理工大学学报. 2023(11): 1115-1124 .
    31. 陈新咏. 某高位滑坡强变形监测及成因机制分析. 福建建材. 2022(01): 64-67+73 .
    32. 易思材,张明文,李帅. 云南某梯田滑坡灾害治理施工技术. 建筑机械化. 2022(02): 64-66 .
    33. 丁永辉,张勤,杨成生,王猛,丁辉. 基于高分遥感的金沙江流域滑坡识别——以巴塘县王大龙村为例. 测绘通报. 2022(04): 51-55 .
    34. 王海鹏,高瑞丹,宁树理,王航,寻怀军. 重庆市丰太六组前缘滑坡特征分析及治理方案. 工程建设. 2022(06): 36-41 .
    35. 戴可人,沈月,吴明堂,冯文凯,董秀军,卓冠晨,易小宇. 联合InSAR与无人机航测的白鹤滩库区蓄水前地灾隐患广域识别. 测绘学报. 2022(10): 2069-2082 .
    36. 铁永波,葛华,高延超,白永健,徐伟,龚凌枫,王家柱,田凯,熊小辉,范文录,张宪政. 二十世纪以来西南地区地质灾害研究历程与展望. 沉积与特提斯地质. 2022(04): 653-665 .
    37. 钟彬,柳志云,李向新,吕加颖. 滑坡形变的升降轨时序干涉合成孔径雷达监测与分析. 激光与光电子学进展. 2022(24): 247-254 .
    38. 杨成生,董继红,朱赛楠,熊国华. 金沙江结合带巴塘段滑坡群InSAR探测识别与形变特征. 地球科学与环境学报. 2021(02): 398-408 .
    39. 朱赛楠,殷跃平,黄波林,张枝华,王平,王文沛,赵慧,张晨阳. 三峡库区大型单斜顺层新生滑坡变形特征与失稳机理研究. 工程地质学报. 2021(03): 657-667 .
    40. 吴瑞安,马海善,张俊才,杨志华,李雪,倪嘉伟,钟宁. 金沙江上游沃达滑坡发育特征与堵江危险性分析. 水文地质工程地质. 2021(05): 120-128 .
    41. 黄细超,余天彬,王猛,朱赛楠,宋班,刘文. 金沙江结合带高位远程滑坡灾害链式特征遥感动态分析——以白格滑坡为例. 中国地质灾害与防治学报. 2021(05): 40-51 .
    42. 熊国华,杨成生,朱赛楠,董继红,张勤. 基于MSBAS技术的金沙江上游色拉滑坡形变分析. 中国地质灾害与防治学报. 2021(05): 1-9 .

    Other cited types(19)

Catalog

    Article views (553) PDF downloads (163) Cited by(61)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return