Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Zengchun, LIU Hanlong, XIAO Yang. Fractional-order plasticity model for sand-silt mixtures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1596-1604. DOI: 10.11779/CJGE20230666
Citation: SUN Zengchun, LIU Hanlong, XIAO Yang. Fractional-order plasticity model for sand-silt mixtures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1596-1604. DOI: 10.11779/CJGE20230666

Fractional-order plasticity model for sand-silt mixtures

More Information
  • Received Date: July 12, 2023
  • Available Online: January 09, 2024
  • The sand-silt mixtures, as common heterogeneous soils, are ubiquitous in nature and geotechnical engineering, and their particle contact state and mechanical properties are significantly affected by the factors such as density, stress level and fines content. In order to comprehensively describe the complex mechanical properties of the sand-silt mixtures within the fines content threshold (FC<FCthre), the plastic flow rules that can uniformly describe association and non-association are determined based on the fractional calculus theory. Using the concept of equivalent skeleton void ratio, the equivalent skeleton state parameter is embedded in the dilatancy equation and plastic modulus, and then a fractional-order plasticity model considering the fines content and state-dependent behavior is established. The comparison between the predicted results and the experimental data shows that the proposed fractional-order plasticity model can effectively reflect the strain-softening (strain-hardening) and dilatancy (contraction) behaviors of the sand-silt mixtures under drained conditions. Meanwhile, the key characteristics of undrained conditions, such as flow and non-flow behaviors, can also be reasonably described.
  • [1]
    吴琪, 陈国兴, 周正龙, 等. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究[J]. 岩土工程学报, 2018, 40(6): 475-485. doi: 10.11779/CJGE201803011

    WU Qi, CHEN Guoxing, ZHOU Zhenglong, et al. Experimental investigation on liquefaction resistance of fine-coarse-grained soil mixtures based on theory of intergrain contact state[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 475-485. (in Chinese) doi: 10.11779/CJGE201803011
    [2]
    李涛, 赵洪扬, 翁勃航, 等. 细颗粒形状和含量对钙质混合砂强度的影响试验研究[J]. 岩土工程学报, 2023, 45(7): 1517-1525. doi: 10.11779/CJGE20220535

    LI Tao, ZHAO Hongyang, WENG Bohang, et al. Experimental study on effects of shape and content of fine particles on strength of calcareous mixed sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1517-1525. (in Chinese) doi: 10.11779/CJGE20220535
    [3]
    YILMAZ Y, DENG Y, CHANG CS, et al. Strength-dilatancy and critical state behaviours of binary mixtures of graded sands influenced by particle size ratio and fines content[J]. Géotechnique, 2023, 73(3): 202-217. doi: 10.1680/jgeot.20.P.320
    [4]
    LADE P V, YAMAMURO J A. Effects of nonplastic fines on static liquefaction of sands[J]. Canadian Geotechnical Journal, 1997, 34(6): 918-928. doi: 10.1139/t97-052
    [5]
    RAHMAN M M, LO S R, BAKI MAL. Equivalent granular state parameter and undrained behaviour of sand-fines mixtures[J]. Acta Geotechnica, 2011, 6(4): 183-194. doi: 10.1007/s11440-011-0145-4
    [6]
    MONKUL M M, ETMINAN E, ŞENOL A. Coupled influence of content, gradation and shape characteristics of silts on static liquefaction of loose silty sands[J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 12-26. doi: 10.1016/j.soildyn.2017.06.023
    [7]
    GOBBI S, SANTISI D M P, LENTI L, et al. Effect of active plastic fine fraction on undrained behavior of binary granular mixtures[J]. International Journal of Geomechanics, 2022, 22(1): 06021035. doi: 10.1061/(ASCE)GM.1943-5622.0002242
    [8]
    CHANG C S, YIN Z Y. Micromechanical modeling for behavior of silty sand with influence of fine content[J]. International Journal of Solids and Structures, 2011, 48(19): 2655-2667. doi: 10.1016/j.ijsolstr.2011.05.014
    [9]
    RAHMAN M M, LO S R, DAFALIAS Y F. Modelling the static liquefaction of sand with low-plasticity fines[J]. Géotechnique, 2014, 64(11): 881-894. doi: 10.1680/geot.14.P.079
    [10]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [11]
    XU L Y, ZHANG J Z, CAI F, et al. Constitutive modeling the undrained behaviors of sands with non-plastic fines under monotonic and cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2019, 123: 413-424. doi: 10.1016/j.soildyn.2019.05.021
    [12]
    WEI X, YANG J. A critical state constitutive model for clean and silty sand[J]. Acta Geotechnica, 2019, 14(2): 329-345.
    [13]
    SUN Z C, CHU J, XIAO Y. Formulation and implementation of an elastoplastic constitutive model for sand-fines mixtures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(18): 2682-2708. doi: 10.1002/nag.3282
    [14]
    李晓强, 梁靖宇, 路德春, 等. 非饱和土的非正交弹塑性本构模型[J]. 中国科学: 技术科学, 2022, 52(7): 1048-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202207006.htm

    LI Xiaoqiang, LIANG Jingyu, LU Dechun, et al. Non- orthogonal elastoplastic constitutive model for unsaturated soil[J]. SCIENTIA SINICA Technologica, 2022, 52(7): 1048-1064. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202207006.htm
    [15]
    YAO Y P, HE G, LUO T. Study on determining the plastic flow direction of soils with dilatancy[J]. Acta Geotechnica, 2023, 18(5): 2411-2425. doi: 10.1007/s11440-022-01770-8
    [16]
    SUN Y F, SHEN Y. Constitutive model of granular soils using fractional-order plastic-flow rule[J]. International Journal of Geomechanics, 2017, 17(8): 04017025. doi: 10.1061/(ASCE)GM.1943-5622.0000904
    [17]
    LU D C, LIANG J Y, DU X L, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Computers and Geotechnics, 2019, 105: 277-290. doi: 10.1016/j.compgeo.2018.10.004
    [18]
    路德春, 金辰逸, 梁靖宇, 等. 考虑状态相关的砂土非正交弹塑性本构模型[J]. 岩土工程学报, 2023, 45(2): 221-231. doi: 10.11779/CJGE20211457

    (LU Dechun, JIN Chenyi, LIANG Jingyu, et al. State-dependent non-orthogonal elastoplastic constitutive model for sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 221-231. doi: 10.11779/CJGE20211457
    [19]
    汪成贵, 束善治, 肖杨, 等. 考虑钙质砂颗粒破碎的分数阶边界面本构模型[J]. 岩土工程学报, 2023, 45(6): 1162-1170. doi: 10.11779/CJGE20220229

    WANG Chenggui, SHU Shanzhi, XIAO Yang, et al. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. (in Chinese) doi: 10.11779/CJGE20220229
    [20]
    THEVANAYAGAM S, SHENTHAN T, MOHAN S, et al. Undrained fragility of clean sands, silty sands, and sandy silts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 849-859. doi: 10.1061/(ASCE)1090-0241(2002)128:10(849)
    [21]
    CHANG C S, DENG Y. Revisiting the concept of inter- granular void ratio in view of particle packing theory[J]. Géotechnique Letters, 2019, 9(2): 121-129. doi: 10.1680/jgele.18.00175
    [22]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
    [23]
    MURTHY T G, LOUKIDIS D, CARRARO J A H, et al. Undrained monotonic response of clean and silty sands[J]. Géotechnique, 2007, 57(3): 273-288. doi: 10.1680/geot.2007.57.3.273
    [24]
    GOUDARZY M, SARKAR D, LIESKE W, et al. Influence of plastic fines content on the liquefaction susceptibility of sands: monotonic loading[J]. Acta Geotechnica, 2022, 17(5): 1719-1737. doi: 10.1007/s11440-021-01283-w
    [25]
    ZHU Z H, DUPLA J C, CANOU J, et al. Experimental study of liquefaction resistance: effect of non-plastic silt content on sand matrix[J]. European Journal of Environmental and Civil Engineering, 2022, 26(7): 2671-2689. doi: 10.1080/19648189.2020.1765198
    [26]
    LÜ X L, XUE D W, ZHANG B, et al. Experimental studies and constitutive modeling of static liquefaction instability in sand-clay mixtures[J]. International Journal of Geomechanics, 2022, 22(9): 04022149. doi: 10.1061/(ASCE)GM.1943-5622.0002472
    [27]
    YAO Y P, HOU W, ZHOU A N. UH model: Three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [28]
    GOUDARZY M, RAHEMI N, RAHMAN M M, et al. Predicting the maximum shear modulus of sands containing nonplastic fines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(9): 06017013. doi: 10.1061/(ASCE)GT.1943-5606.0001760
    [29]
    孙增春, 汪成贵, 刘汉龙, 等. 粗粒土边界面塑性模型及其积分算法[J]. 岩土力学, 2020, 41(12): 3957-3967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm

    SUN Zengchun, WANG Chenggui, LIU Hanlong, et al. Bounding surface plasticity model for granular soil and its integration algorithm[J]. Rock and Soil Mechanics, 2020, 41(12): 3957-3967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm
    [30]
    XIAO Y, SUN Y F, LIU H L, et al. Model predictions for behaviors of sand-nonplastic-fines mixtures using equivalent- skeleton void-ratio state index[J]. Science China Technological Sciences, 2017, 60(6): 878-892. doi: 10.1007/s11431-016-9024-9
    [31]
    XIAO Y, LIU H L, CHEN Y M, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. doi: 10.1061/(ASCE)EM.1943-7889.0000702
  • Cited by

    Periodical cited type(18)

    1. 梁越,罗安志,杨牛虎,许彬,代磊. 恒定围压下间断级配散粒土内部侵蚀机理研究. 防灾减灾工程学报. 2025(01): 224-232 .
    2. 张远庆,陈勇,王世梅,王力. 岸坡渗流潜蚀模型试验系统变革研究. 三峡大学学报(自然科学版). 2025(02): 48-54 .
    3. 杨彪山,查浩,国鸿圆. 多向汇水条件下弃渣土体细颗粒启动机制研究. 地质灾害与环境保护. 2025(01): 88-96 .
    4. 梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 . 本站查看
    5. 梁越,喻金桃,张强,许彬,张宏杰,龚胜勇. 骨架颗粒组成对散粒土管涌规律影响的试验研究. 河海大学学报(自然科学版). 2024(01): 63-69 .
    6. 黄达,高溢康,黄文波. 基于CT扫描的渗流作用下碎石土孔隙结构变化规律研究. 水文地质工程地质. 2024(02): 123-131 .
    7. 王浩,许少鸿,陈叶健,徐陈灵,黄瑛瑛. 闽粤地区花岗岩风化土体粘粒迁移过程的土柱渗流试验. 山地学报. 2024(01): 132-142 .
    8. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    9. 刘垒雷,邓刚,李维朝,陈锐,周超,徐立强. 不同细粒含量与间断比下不连续级配砂砾土渗蚀的CFD-DEM数值模拟. 中南大学学报(自然科学版). 2024(07): 2677-2689 .
    10. 王櫹橦,陈盟,唐莹影,袁仁茂. 透明土试验技术在滑坡降雨入渗中的研究与应用. 煤炭学报. 2024(07): 3051-3062 .
    11. 胡焕校,谢中良,甘本清,卢雨帆,邓超. 透明砂土基本特性及其在注浆模型试验中的应用. 水资源与水工程学报. 2024(04): 179-186 .
    12. 王润北,吴能森. 平动模式下墙后有限黏性填土破坏模型试验研究. 河南城建学院学报. 2024(04): 72-79 .
    13. 梁越,何慧汝,许彬,张鑫强,冉裕星. 基于透明土的水力梯度对渗流侵蚀影响试验研究. 河海大学学报(自然科学版). 2024(05): 60-66 .
    14. 徐春瑞,郭畅,黄博. 孔隙率对砂土渗透稳定性影响的内部可视化研究. 地基处理. 2024(05): 451-462 .
    15. 徐春瑞,薛阳,郭畅,黄博. 超重力下粒子图像测速系统性能测试与评价. 地基处理. 2024(06): 547-556 .
    16. 何建新,董旭光,马渊博. 坡顶荷载作用下多级边坡失稳演化机制的透明土试验研究. 西北工程技术学报. 2024(04): 347-355 .
    17. 张亮亮,邓刚,陈锐,张茵琪,罗之源. 不连续级配无黏性土渗蚀演变特征研究. 岩土工程学报. 2023(07): 1412-1420 . 本站查看
    18. 王力,张晨宇,王世梅,潘宇晨. 波浪侵蚀诱发碎石土岸坡变形的模拟试验研究. 泥沙研究. 2023(04): 45-52 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return