• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Songyu, LAI Fengwen, CAI Guojun, LI Hongjiang, LU Taishan, ZHANG Chaozhe. A CPTU-based earth pressure model for deep excavations under complex environment and its practical application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1563-1572. DOI: 10.11779/CJGE20230649
Citation: LIU Songyu, LAI Fengwen, CAI Guojun, LI Hongjiang, LU Taishan, ZHANG Chaozhe. A CPTU-based earth pressure model for deep excavations under complex environment and its practical application[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1563-1572. DOI: 10.11779/CJGE20230649

A CPTU-based earth pressure model for deep excavations under complex environment and its practical application

More Information
  • Received Date: July 10, 2023
  • Available Online: November 15, 2023
  • The determination of earth pressure is a key element for the design of retaining structures of deep excavations. However, the existing earth pressure models can not reasonably consider the change of soil properties induced by excavation activities. The piezocone penetration test (CPTU) is capable of effectively avoiding the sampling disturbance and quickly providing the continuous in-situ testing parameters of soils (cone resistance, sleeve friction, pore water pressure). Combining the CPTU tests and the displacement-based earth pressure model, the change of soil properties induced by excavations, surrounding buried structures (confined soil), soil arching effects, soil strength parameters and friction angle of the soil-structure interface are comprehensively taken into account to develop a unified earth pressure model (from active- to passive-state) under the Coulomb's earth pressure framework. The comparisons of earth pressures obtained between 1g-/ng- model tests and the developed model are made for the validation. Subsequently, the developed model is employed in a deep excavation adjacent to a metro station in soft soils deposited in the Taihu Lake. The CPTU tests are then performed in the soils around both sides of retaining structures, of which the earth pressure and lateral deformation are also measured. The interpretation of in-situ testing results indicates that state parameters of soils significantly change due to excavations, but the effective friction angle almost remains unchanged. The further comparisons of earth pressures obtained between the measurement and the developed model indicate that the CPTU-based earth pressure model works well for a deep excavation under a complex environment, thus successfully reaching a practical application.
  • [1]
    SCHWEIGER H F, TSCHUCHNIGG F. A numerical study on undrained passive earth pressure[J]. Computers and Geotechnics, 2021, 140: 104441. doi: 10.1016/j.compgeo.2021.104441
    [2]
    赖丰文, 刘松玉, 杨大禹, 等. 有限宽度填土挡墙主动土压力的普适解法[J]. 岩土工程学报, 2022, 44(3): 483-491. doi: 10.11779/CJGE202203010

    LAI Fengwen, LIU Songyu, YANG Dayu, et al. Generalized solution to active earth pressure exerted onto retaining wall with narrow backfills[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 483-491. (in Chinese) doi: 10.11779/CJGE202203010
    [3]
    FANG Y S, CHEN T J, WU B F. Passive earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1994, 120(8): 1307-1323. doi: 10.1061/(ASCE)0733-9410(1994)120:8(1307)
    [4]
    FANG Y S, ISHIBASHI I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1986, 112(3): 317-333. doi: 10.1061/(ASCE)0733-9410(1986)112:3(317)
    [5]
    DENG C, HAIGH S K. Earth pressures mobilised in dry sand with active rigid retaining wall movement[J]. Géotechnique Letters, 2021, 11(3): 202-208. doi: 10.1680/jgele.20.00116
    [6]
    DENG C, HAIGH S K. Sand deformation mechanisms and earth pressures mobilised with passive rigid retaining wall movements[J]. Géotechnique, 2022: 1-14.
    [7]
    FAN X, XU C, LIANG L, et al. Analytical solution for displacement-dependent passive earth pressure on rigid walls with various wall movements in cohesionless soil[J]. Computers and Geotechnics, 2021, 140: 104470. doi: 10.1016/j.compgeo.2021.104470
    [8]
    WANG L, XIAO S. Calculation method for displacement- dependent earth pressure on a rigid wall rotating around its base[J]. International Journal of Geomechanics, 2021, 21(8): 04021132. doi: 10.1061/(ASCE)GM.1943-5622.0002104
    [9]
    NEJJAR K, DIAS D, CUIRA F, et al. Numerical modelling of a 32 m deep excavation in the suburbs of Paris[J]. Engineering Structures, 2022, 268: 114727. doi: 10.1016/j.engstruct.2022.114727
    [10]
    NEJJAR K, DIAS D, CUIRA F, et al. Experimental study of the performance of a 32 m deep excavation in the suburbs of Paris[J]. Géotechnique, 2021: 1-11.
    [11]
    MEI G, CHEN Q, SONG L. Model for predicting displacement-dependent lateral earth pressure[J]. Canadian Geotechnical Journal, 2009, 46(8): 969-975. doi: 10.1139/T09-040
    [12]
    MEI G, CHEN R, LIU J. New insight into developing mathematical models for predicting deformation-dependent lateral earth pressure[J]. International Journal of Geomechanics, 2017, 17(8): 06017003. doi: 10.1061/(ASCE)GM.1943-5622.0000902
    [13]
    NI P, MANGALATHU S, SONG L, et al. Displacement- dependent lateral earth pressure models[J]. Journal of Engineering Mechanics, 2018, 144(6): 04018032. doi: 10.1061/(ASCE)EM.1943-7889.0001451
    [14]
    NI P, MEI G, ZHAO Y. Displacement-dependent earth pressures on rigid retaining walls with compressible geofoam inclusions: physical modeling and analytical solutions[J]. International Journal of Geomechanics, 2017, 17(6): 04016132. doi: 10.1061/(ASCE)GM.1943-5622.0000838
    [15]
    NI P, SONG L, MEI G, et al. On predicting displacement- dependent earth pressure for laterally loaded piles[J]. Soils and Foundations, 2018, 58(1): 85-96. doi: 10.1016/j.sandf.2017.11.007
    [16]
    POTTS D, FOURIE A. A numerical study of the effects of wall deformation on earth pressures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10(4): 383-405. doi: 10.1002/nag.1610100404
    [17]
    British Code BA42/96 The Design of Integral Bridges[S]. London: Highways Agency, 1996.
    [18]
    DUNCAN J M, MOKWA R L. Passive earth pressures: theories and tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3): 248-257. doi: 10.1061/(ASCE)1090-0241(2001)127:3(248)
    [19]
    Transportation Officials, Subcommittee on Bridges. AASHTO Guide Specifications for LRFD Seismic Bridge Design[S]. AASHTO, 2011.
    [20]
    刘松玉, 吴燕开. 论我国静力触探技术(CPT) 现状与发展[J]. 岩土工程学报, 2004, 26(4): 553-556. http://cge.nhri.cn/cn/article/id/11468

    LIU Songyu, WU Yankai. On the state-of-art and development of CPT in China[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 553-556. (in Chinese) http://cge.nhri.cn/cn/article/id/11468
    [21]
    蔡国军, 刘松玉, 童立元, 等. 现代数字式多功能CPTU与中国CPT对比试验研究[J]. 岩石力学与工程学报, 2009, 28(5): 914-928. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905011.htm

    CAI Guojun, LIU Songyu, TONG Liyuan, et al. Comparative study of modern digital multifunctional CPTU and China's CPT tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 914-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905011.htm
    [22]
    MAYNE P W, COOP M R, SPRINGMAN S M, et al. Geomaterial behavior and testing[C]// Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. IOS Press, 2009: 2777-2872.
    [23]
    LI H, LIU S, TONG L. Evaluation of lateral response of single piles to adjacent excavation using data from cone penetration tests[J]. Canadian Geotechnical Journal, 2019, 56(2): 236-248.
    [24]
    李赞, 刘松玉, 吴恺, 等. 基于多功能CPTU测试的基坑开挖扰动深度确定方法[J]. 岩土工程学报, 2021, 43(1): 181-187. doi: 10.11779/CJGE202101021

    LI Zan, LIU Songyu, WU Kai, et al. Determination of the disturbance depth due to excavations using multifunctional CPTU tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 181-187. (in Chinese) doi: 10.11779/CJGE202101021
    [25]
    LU T, LIU S, CAI G, et al. Effect of excavation disturbance on clayey soil mechanical properties and pile capacity[J]. International Journal of Geomechanics, 2022, 22(7): 05022003.
    [26]
    LAI F, ZHANG N, LIU S, et al. A generalised analytical framework for active earth pressure on retaining walls with narrow soil[J]. Géotechnique, 2022: 1-16.
    [27]
    LI C, LAI F, SHIAU J, et al. Passive earth pressure in narrow cohesive-frictional backfills[J]. International Journal of Geomechanics, 2023, 23(1): 04022262.
    [28]
    CLOUGH G, DUNCAN J. Foundation Engineering Handbook[M]. New York: Springer, 1991.
    [29]
    MAYNE P. Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPT and DMT[J]. Australian Geomechanics Journal, 2016, 51(4): 27-55.
    [30]
    OUYANG Z, MAYNE P W. Modified NTH method for assessing effective friction angle of normally consolidated and overconsolidated clays from piezocone tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019067.
    [31]
    MAYNE P W. Integrated Ground Behavior: In-Situ and Labtests[M]// London: Taylor & Francis, 2005.
    [32]
    AGAIBY S S, MAYNE P W. CPT evaluation of yield stress profiles in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(12): 04019104.
    [33]
    POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339-353.
    [34]
    LUNNE T, BERRE T, ANDERSEN K H, et al. Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays[J]. Canadian Geotechnical Journal, 2006, 43(7): 726-750.
    [35]
    BLAKER Ø, DEGROOT D J. Intact, disturbed, and reconstituted undrained shear behavior of low-plasticity natural silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(8): 04020062.
    [36]
    杨光华. 土力学发展的四个阶段的思考[J]. 岩土工程学报, 2022, 44(9): 1730-1732. doi: 10.11779/CJGE202209018

    YANG Guanghua. Thingking of four stages of development of soil mechanics [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1730-1732. (in Chinese) doi: 10.11779/CJGE202209018
  • Cited by

    Periodical cited type(9)

    1. 梁运培,李赏,李全贵,郭亚博,孙万杰,郑梦浩,王程成. 基于FEDformer-LGBM-AT架构的采煤工作面上隅角瓦斯浓度预测. 煤炭学报. 2025(01): 360-378 .
    2. 窦道飞. 基于卷积双线性泊松回归的地铁客流预测模型. 中国铁路. 2025(05): 125-132 .
    3. 杨国俊,田里,唐光武,毛建博,杜永峰. D-S理论和Markov链组合的桥梁性能退化预测研究. 应用数学和力学. 2024(04): 416-428 .
    4. 张文松,贾磊,姚荣涵,孙立. 基于Self-CGRU模型的地铁基坑周边地表沉降预测. 岩土力学. 2024(08): 2474-2482+2491 .
    5. 杨华强,熊坚,张鹏,范宜静,韩冬阳,曹蕾,夏唐斌. 基于改进Croston方法的多需求模式零备件预测. 科学技术与工程. 2024(21): 8987-8995 .
    6. 殷文彦,李冠. 基于多源数据山区地质灾害监测预警应用. 北京测绘. 2024(10): 1459-1463 .
    7. 欧晓春,王勇超,杨佳玉. 基于长短期记忆网络模型的堆载作用厂房桩基长期沉降预测. 市政技术. 2023(05): 112-116+120 .
    8. 杨小权,刘曰木,刘江. 基于卡尔曼滤波与子带选取的轴承声信号增强方法. 机电工程. 2023(11): 1673-1681 .
    9. Xiaokun Hou,Shengwen Qi,Yongtang Yu,Jianguo Zheng. Long-Term Settlement Characterization of High-Filling Foundation in the Mountain Excavation and City Construction Area of the Yan ' an New District, China. Journal of Earth Science. 2023(06): 1908-1915 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return