• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Jun, ZHENG Jingfan, ZHANG Zhizhong, LI Dongkai, HE Zhen. Analytical solution for seepage field and spewing discrimination during propulsion process of earth pressure balance shield[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2101-2110. DOI: 10.11779/CJGE20230633
Citation: YU Jun, ZHENG Jingfan, ZHANG Zhizhong, LI Dongkai, HE Zhen. Analytical solution for seepage field and spewing discrimination during propulsion process of earth pressure balance shield[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2101-2110. DOI: 10.11779/CJGE20230633

Analytical solution for seepage field and spewing discrimination during propulsion process of earth pressure balance shield

More Information
  • Received Date: July 06, 2023
  • Available Online: March 24, 2024
  • Considering the excess pore water pressure generated by the additional thrust on the shield front during the propulsion process, the shield spewing problem is analyzed by the analytical method. The seepage field in soil chamber is divided into two regions, the superposition principle and the separation variable method are used to obtain the explicit level solution for the water head in the soil chamber, the flow field inside the screw conveyor is regarded as one-dimensional seepage, and the analytical solution for the shield seepage field is determined by using the continuity condition of the intersection between the soil chamber and the screw conveyor. The correctness of the solution is verified through the numerical simulation results, and the parameters are analyzed. The parameter analysis shows that the ratio of shield thrust fluctuation frequency to soil consolidation coefficient in the normal tunneling state is about 0.1~10 m-2, which corresponds to the permeability coefficient 10-3~10-5 cm/s, when the ratio is greater than 20 m-2, the influences of the excess pore water pressure can be ignored, and when the ratio is less than 0.01 m-2, the water pressure distribution approximates in the steady-state seepage state, but for the ratio near 1 m-2, the excess pore water pressure will have a significant impact. Combined with the existing spewing researches, the critical permeability coefficient of a typical shield in different ratios thrust fluctuation frequency to soil consolidation coefficient is given. By comparing the shield spewing examples, the spewing discrimination of the analytical solution is proved to be effective.
  • [1]
    SONG Y R, HE J, CHEN G F, et al. Response of the spiral conveyor spewing in water-rich sand[C]// 4th International Conference on Civil Engineering, Architecture and Building Materials, 2014: 1138-1142.
    [2]
    WANG S Y, HUANG S, ZHONG J Z, et al. Permeability stability calculation model of foam-conditioned soil based on the permeability constant[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(4): 540-559. doi: 10.1002/nag.3166
    [3]
    贺少辉, 张淑朝, 李承辉, 等. 砂卵石地层高水压条件下盾构掘进喷涌控制研究[J]. 岩土工程学报, 2017, 39(9): 1583-1590.

    HE Shaohui, ZHANG Shuchao, LI Chenghui, et al. Blowout control during EPB shield tunnelling in sandy pebble stratum with high groundwater pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1583-1590. (in Chinese)
    [4]
    李文辉. 土压平衡盾构中改良剂对砂土渗透性影响研究[D]. 北京: 中国地质大学(北京), 2020.

    LI Wenhui. Study on the Effect of Improvers on the Permeability of Sandy Soil in Soil Pressure Balance Shield[D]. Beijing: China University of Geosciences (Beijing), 2020. (in Chinese)
    [5]
    丁彦杰. 高压富水砂层土压平衡盾构的土体改良技术研究[D]. 北京: 中国矿业大学, 2020.

    DING Miaojie. Study on Soil Improving Techniques with High Water-Pressure in Rich-Water Content Sand Stratum for Earth Pressure Balance Shield[D]. Beijing: China University of Mining and Technology, 2020. (in Chinese)
    [6]
    刘飞, 杨小龙, 冉江陵, 等. 基于盾构掘进效果的富水砾砂地层渣土改良试验研究[J]. 隧道建设(中英文), 2020, 40(10): 1426-1432. doi: 10.3973/j.issn.2096-4498.2020.10.005

    LIU Fei, YANG Xiaolong, RAN Jiangling, et al. Research on soil conditioning of water-rich sandy gravel strata based on shield tunneling effect[J]. Tunnel Construction, 2020, 40(10): 1426-1432. (in Chinese) doi: 10.3973/j.issn.2096-4498.2020.10.005
    [7]
    徐征杰, 郭晓阳. 基于响应面法的盾构施工膨润土改良参数优化[J]. 岩土工程学报, 2021, 43(1): 194-200.

    XU Zhengjie, GUO Xiaoyang. Optimization of bentonite parameters for shield tunneling based on response surface method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 194-200. (in Chinese)
    [8]
    LEE H, KWAK J, CHOI J, et al. A lab-scale experimental approach to evaluate rheological properties of foam- conditioned soil for EPB shield tunnelling[J]. Tunnelling and Underground Space Technology, 2022, 128: 104667. doi: 10.1016/j.tust.2022.104667
    [9]
    WANG S, LU X, WANG X, et al. Soil improvement of EPBS construction in high water pressure and high permeability sand stratum[J]. Advances in Civil Engineering, 2019(5): 1-9.
    [10]
    朱伟, 秦建设, 魏康林. 土压平衡盾构喷涌发生机理研究[J]. 岩土工程学报, 2004, 26(5): 589-593. doi: 10.3321/j.issn:1000-4548.2004.05.003

    ZHU Wei, QIN Jianshe, WEI Kanglin. Research on the mechanism of the spewing in the EPB shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 589-593. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.05.003
    [11]
    万泽恩. 富水无黏性地层盾构喷涌防治机理与渣土运移规律研究[D]. 济南: 山东大学, 2022.

    WAN Zeen. Spewing Prevention Mechanism and Soil Migration for Shield Tunneling in Water-Rich Cohesionless Stratum[D]. Ji'nan: Shandong University, 2022. (in Chinese)
    [12]
    MERRITT A S, MAIR R J. Mechanics of tunnelling machine screw conveyors: model tests[J]. Géotechnique, 2006, 56(9): 605-615. doi: 10.1680/geot.2006.56.9.605
    [13]
    TALEBI K, MEMARIAN H, ROSTAMI J, et al. Modeling of soil movement in the screw conveyor of the earth pressure balance machines (EPBM) using computational fluid dynamics[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2015, 47: 136-142.
    [14]
    JIN D, GUO Y, LI X, et al. Numerical study on the muck flow behavior in the screw conveyor during EPB shield tunneling[J]. Tunnelling and Underground Space Technology, 2023, 134: 105017. doi: 10.1016/j.tust.2023.105017
    [15]
    赵宗智, 崔明, 荆敏, 等. 考虑施工过程的土压平衡盾构喷涌预警研究[J]. 北京交通大学学报, 2020, 44(6): 1-7. doi: 10.11860/j.issn.1673-0291.20200095

    ZHAO Zongzhi, CUI Ming, JING Min, et al. Blowout early warning of earth pressure balance shield during the construction process[J]. Journal of Beijing Jiaotong University, 2020, 44(6): 1-7. (in Chinese) doi: 10.11860/j.issn.1673-0291.20200095
    [16]
    ZHENG G, DAI X, DIAO Y. Parameter analysis of water flow during EPBS tunnelling and an evaluation method of spewing failure based on a simplified model[J]. Engineering Failure Analysis, 2015, 58: 96-112. doi: 10.1016/j.engfailanal.2015.08.033
    [17]
    YU J, ZHENG J F, LI D K, et al. Analytical study on the seepage field of EPBS and preliminary discrimination of spewing[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2023, 140: 105241.
    [18]
    宋锦虎, 陈坤福, 马元, 等. 波动推力引起的超孔压对开挖面稳定性的影响分析[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3353-3364.

    SONG Jinghu, CHENG Kunfu, MA Yuan, et al. Effect analysis of excess pore water pressure on face stability caused by thrust undulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3353-3364. (in Chinese)
    [19]
    秦建设, 朱伟. 土压式盾构施工中地下水出渗机理研究[J]. 岩土力学, 2004, 25(10): 1632-1636. doi: 10.3969/j.issn.1000-7598.2004.10.024

    QIN Jianshe, ZHU Wei. Study on flowing through screw conveyor during excavation with EPB shield[J]. Rock and Soil Mechanics, 2004, 25(10): 1632-1636. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.10.024
    [20]
    李红岩, 李文博. 盾构掘进振动对既有隧道结构的动力影响研究[J]. 铁道科学与工程学报, 2022, 19(7): 2005-2014.

    LI Hongyan, LI Wenbo. Dynamic effect induced by shield tunneling to existing tunnel[J]. Journal of Railway Science and Engineering, 2022, 19(7): 2005-2014. (in Chinese)
    [21]
    唐晓武, 朱季, 刘维, 等. 盾构施工过程中的土体变形研究[J]. 岩石力学与工程学报, 2010, 29(2): 417-422.

    TANG Xiaowu, ZHU Ji, LIU Wei, et al. Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 417-422. (in Chinese)
    [22]
    MORI L, MOONEY M, CHA M S. Characterizing the influence of stress on foam conditioned sand for EPB tunneling [J]. Tunnelling and Underground Space Technology, 2018, 71: 454-465. doi: 10.1016/j.tust.2017.09.018
    [23]
    WANG S Y, FENG, Z Y, QU T M, et al. Effect of water head on the permeability of foam-conditioned sands: experimental and analytical investigation[J]. Soils and Foundations, 2023, 63: 101404. doi: 10.1016/j.sandf.2023.101404
  • Cited by

    Periodical cited type(5)

    1. 唐清枫,徐真,孙亚楼,张奇,谭琪,潘多强,吴王锁. 黏土矿物-生物复合胶体影响放射性核素迁移行为与机理研究进展. 核化学与放射化学. 2025(01): 1-16 .
    2. 吴鹏,王驹,凌辉,周志超,段佳欣,李南,段先哲. 甘肃北山新场深部地下水中铀的赋存形态及其影响因素的地球化学模拟研究. 原子能科学技术. 2024(05): 1007-1016 .
    3. 田云婷,谭凯旋,李咏梅,李春光,唐治鹏,李小杰. 还原条件下膨润土胶体稳定性研究. 南华大学学报(自然科学版). 2024(03): 47-52 .
    4. 邹威燕,周书葵,段毅. 不同地层中放射性核素迁移模型. 有色金属(冶炼部分). 2022(01): 79-87 .
    5. 朱帅润,李绍红,何博,吴礼舟. 改进的Picard法在非饱和土渗流中的应用研究. 岩土工程学报. 2022(04): 712-720 . 本站查看

    Other cited types(7)

Catalog

    Article views (333) PDF downloads (66) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return