• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Zhixiang, LUO Hongjin, ZHANG Lijun, LUO Liru, JIN Yuntao, ZHAO Lei. Coupling analysis method for flexible debris flow barriers considering water blocking and permeability effects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1695-1702. DOI: 10.11779/CJGE20230517
Citation: YU Zhixiang, LUO Hongjin, ZHANG Lijun, LUO Liru, JIN Yuntao, ZHAO Lei. Coupling analysis method for flexible debris flow barriers considering water blocking and permeability effects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1695-1702. DOI: 10.11779/CJGE20230517

Coupling analysis method for flexible debris flow barriers considering water blocking and permeability effects

More Information
  • Received Date: June 06, 2023
  • Available Online: November 29, 2023
  • To solve the dynamic effects of blocking and permeating water under the scouring effects of mudflow on flexible protection projects, a coupled S-ALE-FEM method considering the water blocking and permeability effects of mudflow flexible protection process is established. The equivalent thin film unit of the ring network considering the water-blocking-permeability effects is established according to the Euler-Lagrange coupling algorithm based on S-ALE and Ergun formula to realize the equivalent water-blocking-permeability quantification calculation of the dense curved beam-like metal ring network mudslide protection process. The kinetic analysis of the whole process of mudflow flexible protection is carried out in conjunction with the USGS mudflow flexible protection model tests, and the results are compared with the test ones. The study shows that the proposed coupled method can reproduce the full process inversion of debris flow impact, height climbing and infiltration accumulation. Compared with those of the tests, the maximum errors of debris flow accumulation height and accumulation width are 11.9% and 10.3%, respectively, and the maximum difference of debris flow slurry passage is 3.2%. For comparison between the tests and the dynamic response of key components of the flexible protection system, the maximum time-history errors of right side anchor rope, left side anchor rope and mesh are 3.2%, 16.4% and 14.4% respectively. Compared with those of the two theoretical algorithms not considering the water blocking effects, the accuracy of the calculated results of the peak debris flow impact force and the difference of debris flow slurry passage are improved by 4.69% and 17.50%, respectively. The S-A-F coupling method can solve the design and calculation challenges of mudflow flexible protection projects.
  • [1]
    朱颖彦, 潘军宇, 李朝月, 等. 中巴喀喇昆仑公路冰川泥石流[J]. 山地学报, 2022, 40(1): 71-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201006.htm

    ZHU Yingyan, PAN Junyu, LI Chaoyue, et al. Glacier debris flow along China-Pakistan International Karakoram Highway (KKH)[J]. Mountain Research, 2022, 40(1): 71-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202201006.htm
    [2]
    刘波, 牛运华, 王科, 等. 乌东德水电站白滩沟泥石流特性分析与防治措施[J]. 岩土工程学报, 2016, 38(增刊1): 225-230. doi: 10.11779/CJGE2016S1042

    LIU Bo, NIU Yunhua, WANG Ke, et al. Characteristic analysis and control measures for debris flow in Baitan Gully of Wudongde Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 225-230. (in Chinese) doi: 10.11779/CJGE2016S1042
    [3]
    刘成清, 许城杰, 陈鑫, 等. 泥石流柔性防护网结构破坏原因分析与设计对策[J]. 水利与建筑工程学报, 2017, 15(5): 6-11.

    LIU Chenqing, XU Chenjie, CHENG Xin, et al. Failure cause analysis and countermeasures design of flexible debris flow protection system[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(5): 6-11. (in Chinese)
    [4]
    肖思友, 苏立君, 姜元俊. 碎屑流冲击柔性网的离散元仿真研究[J]. 岩土工程学报, 2019, 41(3): 526-533. doi: 10.11779/CJGE201903015

    XIAO Siyou, SU Lijun, JIANG Yuanjun. Numerical investigation on flexible barriers impacted by dry granular flows using DEM modeling[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 526-533(in Chinese) doi: 10.11779/CJGE201903015
    [5]
    SZE H Y, HO K S, KOO C H, et al. Design of flexible barriers against sizeable landslides in Hong Kong[J]. HKIE Transactions Hong Kong Institution of Engineers, 2018, 25(2): 115-128.
    [6]
    韩玫. 汶川震区"宽缓"与"窄陡"沟道型泥石流致灾机理研究[D]. 成都: 西南交通大学, 2016.

    HAN Mei. Hazard Mechanism Research of Wide-Gentle and Narrow-Steep Channels Debris Flow in Wenchuan Earthquake Region[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [7]
    IVERSON R M. The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296. doi: 10.1029/97RG00426
    [8]
    WENDELER C, VOLKWEIN A. Laboratory tests for theoptimizati-onof mesh size for flexible debris-flow barriers[J]. N-at Hazard Earth Sys, 2015, 15(12): 2597-2604. doi: 10.5194/nhess-15-2597-2015
    [9]
    ARMANINI A. On the Dynamic Impact of Debris Flows[M]. Berlin: Springer, 1997.
    [10]
    HUNGR O, MORGAN G C, KELLERHALS R. Quantitative an-alysis of debris torrent hazards for design of remedia-lmeasures[J]. Canadian Geotechnical Journal, 2011, 21(4): 663-677.
    [11]
    TAN D Y, YIN J H, QIN J Q, et al. Experimental s-tudy on impact and deposition behaviors of multiple surges of channelized debris flow on a flexible barrier[J]. Landslides, 2020, 17(7): 1577-1589. doi: 10.1007/s10346-020-01378-7
    [12]
    DENATALE J S, IVERSON R M, MAJOR J J, et al. Experimental Testing of Flexible Barriers for Containment of Debris Flows[M]. Reston: US Department of the Interior, US Geological Survey, 1999.
    [13]
    LIU C, YU Z X, ZHAO S C. Quantifying the impac-t of a debris avalanche against a flexible barrier by coupled DEM-FEM analyses[J]. Landslides, 2020, 17(1): 33-47. doi: 10.1007/s10346-019-01267-8
    [14]
    LIU C, YU Z X, ZHAO S C. A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation[J]. Landslides, 2021, 18(7): 2403-2425. doi: 10.1007/s10346-021-01640-6
    [15]
    柳春. 柔性防护结构坡面地质灾害作用的离散化分析理论与方法[D]. 成都: 西南交通大学, 2020.

    LIU Chun. Theory and Method of Discrete analysis for Flexible Protective Structure against Geological Hazard on Shallow Slope[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [16]
    王明振, 曹东风, 吴彬, 等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析[J]. 重庆大学学报, 2020, 43(6): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202006003.htm

    WANG Mingzhen, CAO Dongfeng, WU Bin, et al. Numerical analysis of aircraft dynamic behavior in ditching based on S-ALE fluid-structure interaction method[J]. Journal of Chongqing University, 2020, 43(6): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202006003.htm
    [17]
    汪春辉, 王嘉安, 王超, 等. 基于S-ALE方法的圆柱体垂直出水破冰研究[J]. 力学学报, 2021, 53(11): 3110-3123. doi: 10.6052/0459-1879-21-217

    WANG Chunhui, WANG Jia'an, WANG Chao, et al. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123. (in Chinese) doi: 10.6052/0459-1879-21-217
    [18]
    JIN Y T, YU Z X, LUO L R, et al. A membrane e-quivalent method to reproduce the macroscopic mechanical responses of steel wire-ring nets under rockfall impact[J]. Thin-walled Structures, 2021, 167: 108227.
    [19]
    贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感, 2009, 30(1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm

    JIA He, RONG Wei, CHENG Guoliang. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery and Remote Sensing, 2009, 30(1): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm
    [20]
    AQUELET N, WANG J. Porous parachute modelling with an Euler-Lagrange coupling[J]. European Journal of Computational Mechanics, 2007, 16(3/4): 385-399.
    [21]
    HALLGUIST J O. LS-DYNA–3D Theoretical Manual[M]. Pittsburgh: Livermore Software Technology Co., 1991: 1-11.
    [22]
    ZHAO L, YU Z X, HE J W, et al. Coupled numerical simulation of a flexible barrier impacted by debris flow with boulders in front[J]. Landslides, 2020, 17(12): 2723-2736.
    [23]
    USGS Debris Flow Impact on Cable Net Mostly Satura-ted Sand/Gravel Mix[DB/OL]. https://pubs.usgs.gov/of/2007/1315/videos/1996/06-25-1996.mp4,1996-06-25/2023-09-06.
    [24]
    TAN D Y, YIN J H, FENG W Q, et al. New Simpl-e Method for calculating impact force on flexible b-arrier considering partial muddy debris flow passing through[J]. Journal of Geotechnical and G-eoenvironmental Engineering, 2019, 145(9).
  • Cited by

    Periodical cited type(15)

    1. 苗秋福. 高水平应力环境下层状岩体隧道稳定性分析. 公路交通科技. 2025(02): 196-206 .
    2. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 .
    3. 李元海,赵万勇,朱茂国,刘德柱,于恒. 软弱缓倾层状岩层隧道围岩结构变形与失稳机制试验研究. 采矿与安全工程学报. 2024(06): 1148-1157 .
    4. 申志福,徐琪尔,朱玲裕,王志华,高洪梅. 人工制备互层土的静三轴剪切力学特性研究. 岩土工程学报. 2023(04): 840-846 . 本站查看
    5. 赵雪,顾伟红. 基于人工蜂群优化支持向量机回归的隧道塌方风险预测. 科学技术与工程. 2023(09): 3997-4003 .
    6. 严志军. 公路隧道项目施工塌方成因及防控探讨. 交通科技与管理. 2023(09): 135-137 .
    7. 武靖勋. 某铁路隧道塌方综合处治技术. 国防交通工程与技术. 2023(05): 65-67+50 .
    8. 苗景川,肖鹏帅,洪富义,陈诺,李文杰,梁斌. 大凉山深埋软弱围岩公路隧道塌方机理及处治措施. 科学技术与工程. 2023(30): 13143-13149 .
    9. 李向峰. 软弱千枚岩塌方施工处理技术研究. 运输经理世界. 2022(15): 110-112 .
    10. 阮小勇,张佳. 顺层偏压隧道围岩破坏规律研究及施工控制技术. 科学技术创新. 2022(31): 158-161 .
    11. 耿启军. 富水全风化红砂岩地层隧道涌水涌砂机理及防治. 铁道建筑技术. 2022(12): 164-169 .
    12. 李荣锦,邹鑫,李荣建,林国强,白维仕,张瑾. 半嵌泥岩半覆黄土隧道模型试验及承载特性评价. 岩土工程学报. 2022(S1): 98-103 . 本站查看
    13. 王志杰,邱志洪,蔡李斌,张曾照,马兆飞,夏勇,徐海岩. 浩吉铁路阳城隧道全风化红砂岩围岩变形规律. 铁道建筑. 2021(09): 58-62 .
    14. 申志福,徐琪尔,朱玲裕,王志华,高洪梅. 重塑粉质黏土与粉砂互层土试样制备方法. 岩土工程学报. 2021(S2): 96-99 . 本站查看
    15. 王志杰,蔡李斌,邱志洪,芮小豪,马兆飞,程宏生,张曾照,徐海岩. 土砂互层隧道大变形控制技术研究——以浩吉铁路阳城隧道为例. 隧道建设(中英文). 2021(S2): 469-478 .

    Other cited types(22)

Catalog

    Article views (280) PDF downloads (78) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return