• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Zhaotian, LIN Mingyu, SUN De'an, CAO Shanshan, CHE Dongze, LIANG Zhen. Microscopic analysis of thermal conductivity of bentonite as buffer materials under alkaline-thermal conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1408-1417. DOI: 10.11779/CJGE20230473
Citation: ZENG Zhaotian, LIN Mingyu, SUN De'an, CAO Shanshan, CHE Dongze, LIANG Zhen. Microscopic analysis of thermal conductivity of bentonite as buffer materials under alkaline-thermal conditions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1408-1417. DOI: 10.11779/CJGE20230473

Microscopic analysis of thermal conductivity of bentonite as buffer materials under alkaline-thermal conditions

More Information
  • Received Date: May 24, 2023
  • Available Online: November 21, 2023
  • The evolution characteristics of thermal conductivity of the bentonite as buffer layer materials under alkaline-thermal conditions are a key factor in the conceptual design of a deep geological repository for nuclear waste. The evolution laws of thermal conductivity of the bentonite buffer materials under alkaline-thermal conditions are investigated by using the thermal probe method for MX80 bentonite powder pretreated under different alkaline-thermal conditions. On this basis, the XRD, SEM, MIP and TGA tests are carried out on the representative specimens to reveal the mechanisms of alkaline-thermal effects on the evolution of mineral composition, microscopic morphology, pore structure and water-binding morphology of bentonite samples, and to further elucidate the microscopic mechanisms of the evolution of thermal conductivity of bentonite buffer materials under alkali-thermal conditions. The test results show that under alkali-thermal conditions, the thermal conductivity (λ) of the bentonite samples decreases with the increasing pH value of the alkaline solution and increases with the increasing ambient temperature (T). This characteristic is particularly significant in highly alkaline solutions (pH=13.0~14.0) and high temperature environments (T=60℃~90℃). The underlying cause is the dissolution of the original mineral components in the samples under the action of alkaline solution to varying degrees, as evidenced by the reduction in the contents of montmorillonite and quartz and the increase in the zeolite content, resulting in reduction in the solid content of the samples, increase in the porosity, and reduction in the dry density and water absorption properties, while the ambient temperature plays a good role in facilitating the process.
  • [1]
    王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801-812. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200604016.htm

    WANG Ju, CHEN Weiming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801-812. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200604016.htm
    [2]
    PUSCH R. Geological Storage of Highly Radioactive Waste[M]. Berlin: Springer, 2008.
    [3]
    CHEN Z G, TANG C S, SHEN Z T, et al. The geotechnical properties of GMZ buffer/backfill material used in high-level radioactive nuclear waste geological repository: a review[J]. Environmental Earth Sciences, 2017, 76(7): 270. doi: 10.1007/s12665-017-6580-2
    [4]
    ZENG Z T, SHAO J S, SUN D A, et al. Effect of thermal ageing on physical properties of MX80 bentonite under high-temperature conditions[J]. Engineering Geology, 2022, 308: 106822. doi: 10.1016/j.enggeo.2022.106822
    [5]
    TANG A M, CUI Y J. Effects of mineralogy on thermo-hydro-mechanical parameters of MX80 bentonite[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 91-96.
    [6]
    叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm

    YE Weimin, WANG Qiong, PAN Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821-826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
    [7]
    叶为民, 赖小玲, 刘毅, 等. 高庙子膨润土微观结构时效性试验研究[J]. 岩土工程学报, 2013, 35(12): 2255-2261. http://cge.nhri.cn/cn/article/id/15604

    YE Weimin, LAI Xiaoling, LIU Yi, et al. Experimental study on ageing effects on microstructure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2255-2261. (in Chinese) http://cge.nhri.cn/cn/article/id/15604
    [8]
    刘月妙, 蔡美峰, 王驹. 高放废物处置库缓冲材料导热性能研究[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3891-3896. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2043.htm

    LIU Yuemiao, CAI Meifeng, WANG Ju. Thermal properties of buffer material for high-level radioactive waste disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3891-3896. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2043.htm
    [9]
    谢敬礼, 马利科, 高玉峰, 等. 北山花岗岩岩屑-膨润土混合材料导热性能研究[J]. 岩土力学, 2018, 39(8): 2823-2828, 2843. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808014.htm

    XIE Jingli, MA Like, GAO Yufeng, et al. Thermal conductivity of mixtures of Beishan bentonite and crushed granite[J]. Rock and Soil Mechanics, 2018, 39(8): 2823-2828, 2843. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808014.htm
    [10]
    XU Y S, SUN D A, ZENG Z T, et al. Effect of aging on thermal conductivity of compacted bentonites[J]. Engineering Geology, 2019, 253: 55-63. doi: 10.1016/j.enggeo.2019.03.010
    [11]
    LEE G J, YOON S, CHO W J. Effect of bentonite type on thermal conductivity in a HLW repository[J]. Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), 2021, 19(3): 331-338. doi: 10.7733/jnfcwt.2021.19.3.331
    [12]
    ZHANG Z, ZHANG F, MUHAMMED R D. Effect of air volume fraction on the thermal conductivity of compacted bentonite materials[J]. Engineering Geology, 2021, 284: 106045. doi: 10.1016/j.enggeo.2021.106045
    [13]
    BAUER A, VELDE B. Smectite transformation in high molar KOH solutions[J]. Clay Minerals, 1999, 34(2): 259-273. doi: 10.1180/000985599546226
    [14]
    童艳梅, 张虎元, 周光平, 等. 高庙子膨润土中蒙脱石碱性溶蚀的矿物学证据[J]. 岩土力学, 2022, 43(11): 2973-2982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202211005.htm

    TONG Yanmei, ZHANG Huyuan, ZHOU Guangping, et al. Mineralogical evidence of alkaline corrosion of montmorillonite in GMZ bentonite[J]. Rock and Soil Mechanics, 2022, 43(11): 2973-2982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202211005.htm
    [15]
    陈宝, 张会新, 陈萍. 高碱溶液对高庙子膨润土侵蚀作用的研究[J]. 岩土工程学报, 2013, 35(1): 181-186. http://cge.nhri.cn/cn/article/id/14929

    CHEN Bao, ZHANG Huixin, CHEN Ping. Erosion effect of hyper-alkaline solution on Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 181-186. (in Chinese) http://cge.nhri.cn/cn/article/id/14929
    [16]
    陈宝, 张会新, 陈萍. 高碱溶液入渗对GMZ膨润土微观孔隙结构的影响[J]. 浙江大学学报(工学版), 2013(4): 602-608. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201304006.htm

    CHEN Bao, ZHANG Huixin, CHEN Ping. Influence of hyper-alkaline solution infiltration on microscopic pore structure of compacted GMZ bentonite[J]. Journal of Zhejiang University (Engineering Science), 2013(4): 602-608. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201304006.htm
    [17]
    张明, 张虎元, 贾灵艳, 等. 缓冲回填材料的室内制样方法研究[J]. 建筑材料学报, 2012, 15(5): 638-643. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201205013.htm

    ZHANG Ming, ZHANG Huyuan, JIA Lingyan, et al. Method for sample preparation of buffer/backfilling materials in laboratory[J]. Journal of Building Materials, 2012, 15(5): 638-643. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201205013.htm
    [18]
    曾召田, 梁珍, 邵捷昇, 等. 碱-热环境下MX80膨润土导热性能试验研究[J]. 岩土力学, 2022, 43(增刊2): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2015.htm

    ZENG Zhaotian, LIANG Zhen, SHAO Jiesheng, et al. Experimental study on thermal conductivity of MX80 bentonite under alkali-thermal environment[J]. Rock and Soil Mechanics, 2022, 43(S2): 155-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2015.htm
    [19]
    CUISINIER O, MASROURI F, PELLETIER M, et al. Microstructure of a compacted soil submitted to an alkaline PLUME[J]. Applied Clay Science, 2008, 40(1): 159-170.
    [20]
    邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006.

    SHAO Ming'an, WANG Quanjiu, HUANG Mingbin. Soil Physics[M]. Beijing: Higher Education Press, 2006. (in Chinese)
    [21]
    RAMı́REZ S, CUEVAS J, VIGIL R, et al. Hydrothermal alteration of "La Serrata" bentonite (Almeria, Spain) by alkaline solutions[J]. Applied Clay Science, 2002, 21(5/6): 257-269.
    [22]
    BAUER A, BERGER G. Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80℃[J]. Applied Geochemistry, 1998, 13(7): 905-916. doi: 10.1016/S0883-2927(98)00018-3
    [23]
    ANH H N, AHN H, JO H Y, et al. Effect of alkaline solutions on bentonite properties[J]. Environmental Earth Sciences, 2017, 76(10): 374. doi: 10.1007/s12665-017-6704-8
    [24]
    XU Y S, SUN D A, ZENG Z T, et al. Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository[J]. Applied Clay Science, 2019, 174: 10-14. doi: 10.1016/j.clay.2019.03.017
    [25]
    PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222-232. doi: 10.1029/TR038i002p00222
    [26]
    SMITS K, SAKAKI T, HOWINGTON S, et al. Temperature dependence of thermal properties of sands across a wide range of temperatures (30–70℃) [J]. Journal of the Acoustical Society of America, 2013, 138(4): 2256-2265.
    [27]
    KARNLAND O, OLSSON S, NILSSON U, et al. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions[J]. Physics and Chemistry of the Earth, 2007, 32(1/2/3/4/5/6/7): 275-286.
    [28]
    CHOI J W, WHANG J H, CHUN K S, et al. Thermal effects on the physicochemical properties of domestic bentonite as a buffer material of spent fuel repository[J]. Nuclear Engineering and Technology, 1991, 23(4): 456-464.
    [29]
    谢刚, 邓明毅, 张龙. 黏土结合水的热分析定量研究方法[J]. 钻井液与完井液, 2013, 30(6): 1-4, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW201306001.htm

    XIE Gang, DENG Mingyi, ZHANG Long. A study on the influence of electrolytes on clay bound water[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 1-4, 91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW201306001.htm
    [30]
    高国瑞. 近代土质学[M]. 2版. 北京: 科学出版社, 2013.

    GAO Guorui. Neoteric Soil Geotechnology[M]. 2nd ed. Beijing: Science Press, 2013. (in Chinese)

Catalog

    Article views (270) PDF downloads (56) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return