• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Yu, LI Xinggao, GUO Yidong, LIU Hongzhi. Model tests and simulation analyses of starting characteristics of muck in slurry-discharge pipelines of slurry shield in sandy pebble stratum[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1945-1955. DOI: 10.11779/CJGE20230459
Citation: SUN Yu, LI Xinggao, GUO Yidong, LIU Hongzhi. Model tests and simulation analyses of starting characteristics of muck in slurry-discharge pipelines of slurry shield in sandy pebble stratum[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1945-1955. DOI: 10.11779/CJGE20230459

Model tests and simulation analyses of starting characteristics of muck in slurry-discharge pipelines of slurry shield in sandy pebble stratum

More Information
  • Received Date: May 21, 2023
  • Available Online: March 24, 2024
  • During the excavation process of slurry shield tunneling in sandy pebble stratum, the discharge pipeline transport is particularly complex due to a large number of irregular pebbles in the slurry-discharge pipelines. In this study, a circulating current test device is designed, and a three-dimensional transient numerical model is established using the computational fluid dynamics-discrete element method (CFD-DEM) coupling method. The start-up characteristics of the pebbles under different shapes, particle sizes, inclination angles of pipelines, elbow and pipeline diameters are investigated, respectively. In the model tests, the sodium carboxymethyl cellulose (CMC) slurry is used as the carrier liquid, and the transparent acrylic tube is used as the carrier. In the CFD-DEM coupling model, the rheological properties of slurry and the shape of irregular pebbles are considered through the rheological testing and three-dimensional scanning technology, respectively. The results indicated that: (1) Under the same particle size of irregular pebbles and inclination angle of pipelines, the starting velocity of the pebbles follows an order of ellipsoidal shape > flat shape > nearly spherical shapes; (2) Under the same shape of irregular pebbles and inclination angle of pipelines, the starting velocity of pebbles first increases, then decreases, and then increases with the increase of the isometric particle size. (3) For the spherical pebbles, in a horizontal pipeline, the starting velocity of the pebbles first increases, then decreases, and then increases with the increase of the particle size. In the inclined and vertical pipelines, the starting velocity of the pebbles decreases with the increase of the particle size. (4) The starting velocity of the pebbles increases with the increase of the pipe line diameter. (5) The positions with higher starting velocity of pebbles mainly appear at the elbow positions with larger angles (such as 60°and 90°). This is because when the inclination angle of pipelines is≥60°, a vortex zone will appear at the elbow position. The velocity in the vortex zone is opposite to the velocity in the mainstream zone, which hinders the movement of the pebbles. Therefore, when laying pipelines, it is necessary to minimize the laying of large-angle-inclined and vertical pipelines as much as possible, and it is recommended to use more horizontal pipelines or pipelines with small inclination angles (≤45°).
  • [1]
    徐涛, 史庆锋, 章定文, 等. 泥水盾构开挖面泥膜渗透特性与压力传递机制[J]. 岩土工程学报, 2023, 45(9): 1878-1887. doi: 10.11779/CJGE20220866

    XU Tao, SHI Qingfeng, ZHANG Dingwen, et al. Permeability characteristics of filter cake and pressure transfer on face during slurry shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1878-1887. (in Chinese) doi: 10.11779/CJGE20220866
    [2]
    干聪豫, 方应冉, 刘泓志, 等. 复杂多变地层泥水盾构排浆管路振动特性分析[J]. 噪声与振动控制, 2023, 43(1): 275-280. doi: 10.3969/j.issn.1006-1355.2023.01.046

    GAN Congyu, FANG Yingran, LIU Hongzhi, et al. Analysis of vibration characteristics of slurry discharge pipelines of a slurry shield in complex and changeable stratums[J]. Noise and Vibration Control, 2023, 43(1): 275-280. (in Chinese) doi: 10.3969/j.issn.1006-1355.2023.01.046
    [3]
    李承辉, 贺少辉, 刘夏冰. 粗粒径砂卵石地层中泥水平衡盾构下穿黄河掘进参数控制研究[J]. 土木工程学报, 2017, 50(增刊2): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2023.htm

    LI Chenghui, HE Shaohui, LIU Xiabing. Study on main parameters control of tunneling through the yellow river by a slurry balance shield in sandy gravel stratum with some large-size grains[J]. China Civil Engineering Journal, 2017, 50(S2): 147-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2023.htm
    [4]
    王振飞, 张成平. 泥水盾构开挖面失稳破坏的颗粒流模拟研究[J]. 中国铁道科学, 2017, 38(3): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703009.htm

    WANG Zhenfei, ZHANG Chengping. Research on particle flow simulation for excavation face instability of slurry shield[J]. China Railway Science, 2017, 38(3): 55-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703009.htm
    [5]
    霍滨, 徐朝辉, 胡相龙, 等. 砂卵石地层泥水盾构施工技术难点及控制措施分析: 以兰州地铁穿黄隧道工程为例[J]. 隧道建设, 2018, 38(5): 846-850. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201805023.htm

    HUO Bin, XU Zhaohui, HU Xianglong, et al. Analysis of technical difficulties and control measures for slurry shield boring in sandy cobble strata: a case study of Yellow River-corssing tunnel of Lanzhou metro[J]. Tunnel Construction, 2018, 38(5): 846-850. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201805023.htm
    [6]
    黄波, 李晓龙, 陈长江. 大直径泥水盾构复杂地层长距离掘进过程中的泥浆管路磨损研究[J]. 隧道建设, 2016, 36(4): 490-496. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201604020.htm

    HUANG Bo, LI Xiaolong, CHEN Changjiang. Study of abrasion of slurry pipe of large-diameter slurry shield boring in complex strata[J]. Tunnel Construction, 2016, 36(4): 490-496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201604020.htm
    [7]
    DURAND R. The hydraulic transportation of coal and solid mate-rials in pipes[C]// Colloq of National Coal Board, London, 1952: 39-52.
    [8]
    WASP E J, KENNY J P, GANDHI R L. Solid-Liquid Flow Slurry Pipeline Transportation[M]. Clausthal Ger: Trans Tech Publications, 1977.
    [9]
    SHOOK C A. Pipelining solids: the design of short distance pipelines[C]// Proc Symp on Pipeline Transport of Solids, Toronto: Cana Soc Chem Engin, 1969.
    [10]
    MEHMET A K, MUSTAFA G. Critical flow velocity in slurry transporting horizontal pipelines[J]. Canadian Metallurgical Quarterly, 2001, 127(9): 763-771.
    [11]
    费祥俊. 浆体的物理特性与管道输送流速[J]. 管道技术与设备, 2000(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGS200001000.htm

    FEI Xiangjun. The physical property of slurry and its velocity of pipeline transportation[J]. Pipeline Technique and Equipment, 2000(1): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGS200001000.htm
    [12]
    刘德忠. 矿浆管道水力输送的试验研究[J]. 泥沙研究, 1983(4): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ198304009.htm

    LIU Dezhong. Experimental study on hydraulic transportation of slurry pipeline[J]. Journal of Sediment Research, 1983(4): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ198304009.htm
    [13]
    刘明潇, 孙东坡, 王鹏涛, 等. 双峰型非均匀沙粗细颗粒相互作用对推移质输移的影响[J]. 水利学报, 2015, 46(7): 819-827. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201507009.htm

    LIU Mingxiao, SUN Dongpo, WANG Pengtao, et al. Interactions between the coarse and fine particles and their influences on the bimodalnon-uniformbed load transport[J]. Journal of Hydraulic Engineering, 2015, 46(7): 819-827. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201507009.htm
    [14]
    周知进, 刘爱军, 夏毅敏, 等. 颗粒组分特性对扬矿硬管输送速度的影响[J]. 中南大学学报(自然科学版), 2011, 42(9): 2692-2697. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109027.htm

    ZHOU Zhijin, LIU Aijun, XIA Yimin, et al. Influence of particles component properties on transporting speed in lifting pipeline[J]. Journal of Central South University (Science and Technology), 2011, 42(9): 2692-2697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109027.htm
    [15]
    RAVELET F, BAKIR F, KHELLADI S, et al. Experimental study of hydraulic transport of large particles in horizontal pipes[J]. Experimental Thermal and Fluid Science, 2013, 45: 187-197.
    [16]
    陶贺, 金保昇, 钟文琪. 不同物性对椭球形颗粒在移动床中流动特性影响的模拟研究[J]. 中国电机工程学报, 2011, 31(5): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201105013.htm

    TAO He, JIN Baosheng, ZHONG Wenqi. Effect of particle properties on the flow behaviors of ellipsoidal particles in the moving bed[J]. Proceedings of the CSEE, 2011, 31(5): 68-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201105013.htm
    [17]
    AKHSHIK S, BEHZAD M, RAJABI M. CFD-DEM simulation of the hole cleaning process in a deviated well drilling: The effects of particle shape[J]. Particuology, 2016, 25: 72-82.
    [18]
    金大龙, 袁大军, 郑浩田, 等. 高水压条件下泥水盾构开挖面稳定离心模型试验研究[J]. 岩土工程学报, 2019, 41(9): 1653-1660. doi: 10.11779/CJGE201909009

    JIN Dalong, YUAN Dajun, ZHENG Haotian, et al. Centrifugal model tests on face stability of slurry shield tunnels under high water pressures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1653-1660. (in Chinese) doi: 10.11779/CJGE201909009
    [19]
    刘方. 砂卵石地层泥水平衡盾构泥浆性能及掘进面稳定性研究[D]. 重庆: 重庆交通大学, 2019.

    LIU Fang. Study on the Slurry Performance and Face Stability of SPB Shield Tunnel in Cobble-rich Soil[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)
    [20]
    YANG D, XIA Y M, WU D, et al. Numerical investigation of pipeline transport characteristics of slurry shield under gravel stratum[J]. Tunnelling and Underground Space Technology, 2018, 71: 223-230.
    [21]
    THOMAS D G. Transport characteristics of suspensions: part Ⅵ, minimum transport velocity for large Particle size uspensions in round horizontal pipes[J]. American Institute of Chemical Engineers Journal, 1962, 8(3): 373-378.

Catalog

    Article views (346) PDF downloads (50) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return