• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Jingyu, QI Jilin, ZHANG Yuedong, LU Dechun, LI Haowen. Non-orthogonal elastoplastic model for frozen sand incorporating effects of temperature and confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1889-1898. DOI: 10.11779/CJGE20230455
Citation: LIANG Jingyu, QI Jilin, ZHANG Yuedong, LU Dechun, LI Haowen. Non-orthogonal elastoplastic model for frozen sand incorporating effects of temperature and confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1889-1898. DOI: 10.11779/CJGE20230455

Non-orthogonal elastoplastic model for frozen sand incorporating effects of temperature and confining pressure

More Information
  • Received Date: May 22, 2023
  • Available Online: March 24, 2024
  • The mechanical properties of frozen soils are significantly affected by temperature and confining pressure. To characterize the effects of temperature, a nonlinear relationship between the three-dimensional tensile strength and the temperature is established, which is incorporated into the yield function based on the coordinate transformation method. To characterize the effects of confining pressure, a potential strength degradation factor is established, which is used to develop the hardening parameters that effectively account for the effects of the confining pressure. Finally, based on the framework of the non-orthogonal elastoplastic model, a non-orthogonal elastoplastic constitutive model for frozen soils that can consider the effects of temperature and confining pressure is developed in the coordinate transformation space. Comparisons between the model predictions and the triaxial compression test results of the frozen silty sand demonstrate that the developed constitutive model can simulate the stress-strain relationship of frozen silty sand under different temperatures and confining pressures. The developed constitutive model characterizes the temperature effects, i.e., the increase in the peak shear strength with decreasing temperature, and the confining pressure effects, i.e., the transition from shear dilation and softening to shear contraction and hardening as reflected by the stress-strain curve under the increasing confining pressure.
  • [1]
    LAI Y M, XU X T, DONG Y H, et al. Present situation and prospect of mechanical research on frozen soils in China[J]. Cold Regions Science and Technology, 2013, 87: 6-18. doi: 10.1016/j.coldregions.2012.12.001
    [2]
    马巍, 王大雁. 中国冻土力学研究50a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640. http://cge.nhri.cn/cn/article/id/14543

    MA Wei, WANG Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese) http://cge.nhri.cn/cn/article/id/14543
    [3]
    ZHAO Y H, ZHANG M Y, GAO J. Research progress of constitutive models of frozen soils: a review[J]. Cold Regions Science and Technology, 2023, 206: 103720. doi: 10.1016/j.coldregions.2022.103720
    [4]
    XU X T, WANG Y B, BAI R Q, et al. Comparative studies on mechanical behavior of frozen natural saline silty sand and frozen desalted silty sand[J]. Cold Regions Science and Technology, 2016, 132: 81-88. doi: 10.1016/j.coldregions.2016.09.015
    [5]
    KIM S Y, KIM Y, LEE J S. Effects of frozen water content and silt fraction on unconfined compressive behavior of fill materials[J]. Construction and Building Materials, 2021, 266: 120912. doi: 10.1016/j.conbuildmat.2020.120912
    [6]
    NIU Y Q, WANG X, LIAO M K, et al. Strength criterion for frozen silty clay considering the effect of initial water content[J]. Cold Regions Science and Technology, 2022, 196: 103521. doi: 10.1016/j.coldregions.2022.103521
    [7]
    孙晓宇, 齐吉琳, 尹振宇. 冻结饱和标准砂压缩性试验研究[J]. 岩土工程学报, 2018, 40(9): 1723-1728. doi: 10.11779/CJGE201809020

    SUN Xiaoyu, QI Jilin, YIN Zhenyu. Experimental study on compressibility of frozen saturated ISO standard sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1723-1728. (in Chinese) doi: 10.11779/CJGE201809020
    [8]
    高娟, 赖远明, 常丹, 等. 考虑加载速率影响的冻结含盐砂土强度准则研究[J]. 岩土工程学报, 2019, 41(1): 104-110. doi: 10.11779/CJGE201901011

    GAO Juan, LAI Yuanming, CHANG Dan, et al. Strength criterion for frozen saline sand considering effects of loading rates[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 104-110. (in Chinese) doi: 10.11779/CJGE201901011
    [9]
    LI X, YAN Y, JI S Y. Mechanical properties of frozen ballast aggregates with different ice contents and temperatures[J]. Construction and Building Materials, 2022, 317: 125893. doi: 10.1016/j.conbuildmat.2021.125893
    [10]
    ZHANG D, LIU E L, LIU X Y, et al. A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents[J]. Cold Regions Science and Technology, 2017, 143: 1-12. doi: 10.1016/j.coldregions.2017.08.006
    [11]
    LUO F, LIU E L, ZHU Z Y. A strength criterion for frozen moraine soils[J]. Cold Regions Science and Technology, 2019, 164: 102786. doi: 10.1016/j.coldregions.2019.102786
    [12]
    LAI Y M, LIAO M K, HU K. A constitutive model of frozen saline sandy soil based on energy dissipation theory[J]. International Journal of Plasticity, 2016, 78: 84-113. doi: 10.1016/j.ijplas.2015.10.008
    [13]
    QI J L, HU W, MA W. Experimental study of a pseudo-preconsolidation pressure in frozen soils[J]. Cold Regions Science and Technology, 2010, 60(3): 230-233. doi: 10.1016/j.coldregions.2009.10.008
    [14]
    CHANG D, LAI Y M, YU F. An elastoplastic constitutive model for frozen saline coarse sandy soil undergoing particle breakage[J]. Acta Geotechnica, 2019, 14(6): 1757-1783. doi: 10.1007/s11440-019-00775-0
    [15]
    YAO X L, XU G F, ZHANG M Y, et al. A frozen soil rate dependent model with time related parabolic strength envelope[J]. Cold Regions Science and Technology, 2019, 159: 40-46. doi: 10.1016/j.coldregions.2018.12.006
    [16]
    ZHANG D, LIU E L. Binary-medium-based constitutive model of frozen soils subjected to triaxial loading[J]. Results in Physics, 2019, 12: 1999-2008. doi: 10.1016/j.rinp.2019.02.029
    [17]
    LAI Y M, JIN L, CHANG X X. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil[J]. International Journal of Plasticity, 2009, 25(6): 1177-1205. doi: 10.1016/j.ijplas.2008.06.010
    [18]
    LAI Y M, YANG Y G, CHANG X X, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics[J]. International Journal of Plasticity, 2010, 26(10): 1461-1484. doi: 10.1016/j.ijplas.2010.01.007
    [19]
    SUN K, ZHOU A N. A multisurface elastoplastic model for frozen soil[J]. Acta Geotechnica, 2021, 16(11): 3401-3424. doi: 10.1007/s11440-021-01391-7
    [20]
    YANG Y G, LAI Y M, DONG Y H, et al. The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures[J]. Cold Regions Science and Technology, 2010, 60(2): 154-160. doi: 10.1016/j.coldregions.2009.09.001
    [21]
    LU D C, LIANG J Y, DU X L, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Computers and Geotechnics, 2019, 105: 277-290. doi: 10.1016/j.compgeo.2018.10.004
    [22]
    LU D C, ZHOU X, DU X L, et al. A 3D fractional elastoplastic constitutive model for concrete material[J]. International Journal of Solids and Structures, 2019, 165: 160-175. doi: 10.1016/j.ijsolstr.2019.02.004
    [23]
    LI H C, TONG C X, CHANG X, et al. Constitutive modelling of temperature-dependent behaviour of soft rocks with fractional-order flow rule[J]. Applied Sciences, 2022, 12(8): 3875. doi: 10.3390/app12083875
    [24]
    LIANG J Y, LU D C, DU X L, et al. Non-orthogonal elastoplastic constitutive model for sand with dilatancy[J]. Computers and Geotechnics, 2020, 118: 103329. doi: 10.1016/j.compgeo.2019.103329
    [25]
    LIANG J Y, LU D C, ZHOU X, et al. Non-orthogonal elastoplastic constitutive model with the critical state for clay[J]. Computers and Geotechnics, 2019, 116: 103200. doi: 10.1016/j.compgeo.2019.103200
    [26]
    QU P F, ZHU Q Z, ZHAO L Y, et al. A micromechanics-based fractional frictional damage model for quasi-brittle rocks[J]. Computers and Geotechnics, 2021, 139: 104391. doi: 10.1016/j.compgeo.2021.104391
    [27]
    SUN K, TANG L, ZHOU A N, et al. An elastoplastic damage constitutive model for frozen soil based on the super/subloading yield surfaces[J]. Computers and Geotechnics, 2020, 128: 103842. doi: 10.1016/j.compgeo.2020.103842
    [28]
    姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. doi: 10.3321/j.issn:1000-4548.2005.01.003

    YAO Yangping, LU Dechun, ZHOU Annan. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.01.003
    [29]
    姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. doi: 10.11779/CJGE201502001

    YAO Yangping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese) doi: 10.11779/CJGE201502001
    [30]
    YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
    [31]
    高娟, 赖远明. 冻结盐渍土三轴剪切试验过程中的损伤及压融分析[J]. 岩土工程学报, 2018, 40(4): 707-715. doi: 10.11779/CJGE201804015

    GAO Juan, LAI Yuanming. Damage and pressure melting analysis of frozen saline soilsinprocess of triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 707-715. (in Chinese) doi: 10.11779/CJGE201804015
    [32]
    孙星亮, 汪稔, 胡明鉴. 冻土三轴剪切过程中细观损伤演化CT动态试验[J]. 岩土力学, 2005, 26(8): 1298-1302, 1311. doi: 10.3969/j.issn.1000-7598.2005.08.022

    SUN Xingliang, WANG Ren, HU Mingjian. A CT-timely experimental study on meso-scopic structural damage development of frozen soil under triaxial shearing[J]. Rock and Soil Mechanics, 2005, 26(8): 1298-1302, 1311. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.08.022
    [33]
    赵淑萍, 马巍, 郑剑锋, 等. 基于CT单向压缩试验的冻结重塑兰州黄土损伤耗散势研究[J]. 岩土工程学报, 2012, 34(11): 2019-2025. http://cge.nhri.cn/cn/article/id/14883

    ZHAO Shuping, MA Wei, ZHENG Jianfeng, et al. Damage dissipation potential of frozen remolded Lanzhou loess based on CT uniaxial compression test results[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2019-2025. (in Chinese) http://cge.nhri.cn/cn/article/id/14883
  • Related Articles

    [1]MA Peng-fei, LI Shu-chen, YUAN Chao, ZHOU Hui-ying, WANG Man-ling, WANG Xiu-wei. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1109-1117. DOI: 10.11779/CJGE202106014
    [2]YU Zhi-fa, YU Chang-yi, LIU Feng, YAN Shu-wang. Application of numerical manifold method in crack propagation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 751-757. DOI: 10.11779/CJGE202004019
    [3]YU Shu-yang, WANG Hai-jun, REN Ran, TANG Lei, ZHONG Lin-wei, ZHANG Zhi-tao, TANG Zi-xuan. Propagation of double internal cracks under uniaxial tension based on 3D-ILC[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2367-2373. DOI: 10.11779/CJGE201912024
    [4]WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, ZHONG Ling-wei. Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021
    [5]CHEN Guo-qing, PAN Yuan-gui, ZHANG Guo-zheng, ZHANG Guang-ze, WANG Dong. Thermal infrared precursor information of crack propagation for rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1817-1826. DOI: 10.11779/CJGE201910005
    [6]LI Meng, ZHU Zhe-ming, LIU Rui-feng, LIU Bang. Influences of holes on dynamic propagation behaviors of blasting cracks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2191-2199. DOI: 10.11779/CJGE201812005
    [7]ZUO Jian-ping, CHEN Yan, SONG Hong-qiang, WEI Xu. Evolution of pre-peak axial crack strain and nonlinear model for coal-rock combined body[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1609-1615. DOI: 10.11779/CJGE201709008
    [8]ZHU Lei, HUANG Run-qiu, YAN Ming, CHEN Guo-qing. Step-path failure mechanism of rock slopes based on crack coalescence modes in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1216-1224. DOI: 10.11779/CJGE201707007
    [9]RUAN Bin, CHEN Guo-xing, WANG Zhi-hua. Numerical simulation of cracks of homogeneous earth dams using an extended finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 49-54.
    [10]SUN Yuelin, SHEN Zhenzhong, WU Yuejian, XUE Jianfeng. Analytic model for tracing crack propagation under coupled mechanical-hydrological environment[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 199-204.
  • Cited by

    Periodical cited type(13)

    1. 汪云飞,王海军,赵新铭,汤雷,潘建伍. 热载荷下脆性固体中三维平行内裂纹的相互作用:实验和数值模拟(英文). Journal of Central South University. 2023(01): 331-350 .
    2. 胡南燕,黄建彬,罗斌玉,李雪雪,陈敦熙,曾子懿,付晗,娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究. 岩土力学. 2023(12): 3471-3480 .
    3. Jiyun Xu,Hanzhang Li,Haijun Wang,Lei Tang. Experimental study on 3D internal penny-shaped crack propagation in brittle materials under uniaxial compression. Deep Underground Science and Engineering. 2023(01): 37-51 .
    4. Haijun Wang,Hanzhang Li,Lei Tang,Xuhua Ren,Qingxiang Meng,Chun Zhu. Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing. Journal of Rock Mechanics and Geotechnical Engineering. 2022(03): 757-769 .
    5. Haijun Wang,Hanzhang Li,Lei Tang,Jianchun Li,Xuhua Ren. Fracturing behavior of brittle solids containing 3D internal crack of different depths under ultrasonic fracturing. International Journal of Mining Science and Technology. 2022(06): 1245-1257 .
    6. 王海军,乐成军,汤雷,赵初,李汉章,戚海棠. 基于3D-ILC含水平内裂纹脆性固体三点弯断裂特性研究. 岩土力学. 2021(10): 2773-2784 .
    7. 王海军,顾浩,任然,汤雷,郁舒阳,戚海棠. 基于3D-ILC脆性材料双共面与障碍内裂纹扩展特性. 煤炭学报. 2021(S1): 263-273 .
    8. 张志韬,王海军,汤雷,赵初,李汉章,苏正洋. 基于3D-ILC含偏心内裂纹半圆弯拉断裂特性研究. 岩土力学. 2020(01): 111-122+131 .
    9. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 .
    10. 王海军,郁舒阳,汤子璇,汤雷,任然,徐进. 基于3D-ILC含60°内裂纹脆性球体Ⅰ-Ⅱ-Ⅲ型断裂研究. 岩土力学. 2020(05): 1573-1582 .
    11. 王海军,张珂,任然,汤雷,郁舒阳. 基于3D-ILC含60°平行双内裂纹脆性巴西圆盘断裂特性. 工程科学与技术. 2020(04): 184-193 .
    12. 金爱兵,王树亮,王本鑫,孙浩,陈帅军,朱东风. 基于DIC的3D打印交叉节理试件破裂机制研究. 岩土力学. 2020(12): 3862-3872 .
    13. 王海军,郁舒阳,任然,汤雷,李欣昀,贾宇. 基于3D-ILC含内裂纹孔口脆性固体断裂特性试验. 岩土力学. 2019(06): 2200-2212 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return