• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FEI Jianbo, TANG Hao, JIE Yuxin, CHEN Xiangsheng. Scaling laws for quasi-static granular sand at critical state[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1831-1839. DOI: 10.11779/CJGE20230435
Citation: FEI Jianbo, TANG Hao, JIE Yuxin, CHEN Xiangsheng. Scaling laws for quasi-static granular sand at critical state[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1831-1839. DOI: 10.11779/CJGE20230435

Scaling laws for quasi-static granular sand at critical state

More Information
  • Received Date: May 17, 2023
  • Available Online: April 18, 2024
  • The critical state theory of soils describes the correspondence between effective stress, shear strength and soil density. Numerous soil mechanics experiments have also revealed a correlation between soil strength and loading rate. Considering that the granular matter is the actual medium of natural soils, a quasi-static inertia number is proposed, i.e., Q=ϕ0[ln(I)+α], for the granular soils considering the particle volume fraction. Based on the classical triaxial test data of soils, the scaling laws of quasi-static deforming sand at the critical state from the perspective of granular physics are explored, and a simple linear relationship i.e., μ=ξQ, is found between the friction coefficient and the quasi-static particle inertia number. The newly established scaling laws can quantitatively describe the influences of the volume fraction, shear rate, confining pressure and particle size on the frictional properties of sand when reaching the critical state. In addition, to quantify the volumetric deformation laws of sand under quasi-static shear, a correlation is obtained between the particle volume fraction ϕ at the critical state and the quasi-static inertia number Q. In attempt to characterize the scaling laws of the three-dimensional stress state, a new dimensionless number (i.e., the intermediate principal stress number) is defined to reveal the influences of the intermediate principal stress on the frictional properties. Thus, the scaling laws are extended.
  • [1]
    RENDULIC L. Das Grundgesetz der Tonmechanik und sein experimenteller Beweis[J]. Bauingenieur, 1937, 18: 31/32.
    [2]
    HENKEL D J. The relationships between the effective stresses and water content in saturated clays[J]. Géotechnique, 1960, 10(2): 41-54. doi: 10.1680/geot.1960.10.2.41
    [3]
    SCHOFIELD A N, WROTH P. Critical State Soil Mechanics[M]. New York: McGraw-Hill, 1968.
    [4]
    MUIR WOOD D. Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press, 1990.
    [5]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [6]
    JEFFERIES M G. Nor-Sand: a simple critical state model for sand[J]. Géotechnique, 1993, 43(1): 91-103. doi: 10.1680/geot.1993.43.1.91
    [7]
    KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design[R]. Electric Power Research Inst. , Palo Alto, CA (USA); Cornell Univ. , Ithaca, NY (USA). Geotechnical Engineering Group, 1990.
    [8]
    FU Z, CHEN S, PENG C. Modeling cyclic behavior of rockfill materials in a framework of generalized plasticity[J]. International Journal of Geomechanics, 2014, 14(2): 191-204. doi: 10.1061/(ASCE)GM.1943-5622.0000302
    [9]
    LADE P V. Assessment of test data for selection of 3-D failure criterion for sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(4): 307-333. doi: 10.1002/nag.471
    [10]
    BARAN O, ERTAŞ D, HALSEY T C, et al. Velocity correlations in dense gravity-driven granular chute flow[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2006, 74(5 pt 1): 051302.
    [11]
    IORDANOFF I, KHONSARI M M. Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime[J]. J Trib, 2004, 126(1): 137-145. doi: 10.1115/1.1633575
    [12]
    SAVAGE S B. The mechanics of rapid granular flows[J]. Advances in Applied Mechanics, 1984, 24: 289-366.
    [13]
    ANCEY C, COUSSOT P, EVESQUE P. A theoretical framework for granular suspensions in a steady simple shear flow[J]. Journal of Rheology, 1999, 43(6): 1673-1699. doi: 10.1122/1.551067
    [14]
    POULIQUEN O, FORTERRE Y. Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane[J]. Journal of Fluid Mechanics, 2002, 453: 133-151. doi: 10.1017/S0022112001006796
    [15]
    WANG C, DENG A, TAHERI A. Three-dimensional discrete element modeling of direct shear test for granular rubber–sand[J]. Computers and Geotechnics, 2018, 97: 204-216. doi: 10.1016/j.compgeo.2018.01.014
    [16]
    DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2005, 72(2 pt 1): 021309.
    [17]
    SAVAGE S B, SAYED M. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell[J]. Journal of Fluid Mechanics, 1984, 142: 391-430. doi: 10.1017/S0022112084001166
    [18]
    GDR M D. On dense granular flows[J]. The European Physical Journal E, 2004, 14: 341-365. doi: 10.1140/epje/i2003-10153-0
    [19]
    FORTERRE Y, POULIQUEN O. Flows of dense granular media[J]. Annu Rev Fluid Mech, 2008, 40: 1-24. doi: 10.1146/annurev.fluid.40.111406.102142
    [20]
    KAMRIN K, KOVAL G. Nonlocal constitutive relation for steady granular flow[J]. Phys Rev Lett, 2012, 108(17): 178301. doi: 10.1103/PhysRevLett.108.178301
    [21]
    HENANN D L, KAMRIN K. A predictive, size-dependent continuum model for dense granular flows[J]. Proc Natl Acad Sci USA, 2013, 110(17): 6730-6735. doi: 10.1073/pnas.1219153110
    [22]
    BOUZID M, TRULSSON M, CLAUDIN P, et al. Nonlocal rheology of granular flows across yield conditions[J]. Phys Rev Lett, 2013, 111(23): 238301. doi: 10.1103/PhysRevLett.111.238301
    [23]
    BOUZID M, IZZET A, TRULSSON M, et al. Non-local rheology in dense granular flows[J]. The European Physical Journal E, 2015, 38(11): 1-15.
    [24]
    JOP P, FORTERRE Y, POULIQUEN O. A constitutive law for dense granular flows[J]. Nature, 2006, 441(7094): 727-730. doi: 10.1038/nature04801
    [25]
    ALSHIBLI K A, CIL M B. Influence of particle morphology on the friction and dilatancy of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3): 04017118. doi: 10.1061/(ASCE)GT.1943-5606.0001841
    [26]
    AL-SHIBLI K, MACARI E J, STURE S. Digital imaging techniques for assessment of homogeneity of granular materials[J]. Transportation Research Record, 1996, 1526(1): 121-128. doi: 10.1177/0361198196152600115
    [27]
    JOHNSON P C, JACKSON R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing[J]. Journal of fluid Mechanics, 1987, 176: 67-93. doi: 10.1017/S0022112087000570
    [28]
    JOHNSON P C, NOTT P, JACKSON R. Frictional-collisional equations of motion for participate flows and their application to chutes[J]. Journal of Fluid Mechanics, 1990, 210: 501-535. doi: 10.1017/S0022112090001380
    [29]
    XIAO Y, LIU H, LIU H, et al. Strength and dilatancy behaviors of dense modeled rockfill material in general stress space[J]. International Journal of Geomechanics, 2016, 16(5): 04016015. doi: 10.1061/(ASCE)GM.1943-5622.0000645
    [30]
    姜景山, 左永振, 程展林, 等. 围压和密度对粗粒料临界状态力学特性的影响[J]. 长江科学院院报, 2021, 38(5): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202105018.htm

    JIANG Jingshan, ZUO Yongzhen, CHENG Zhanlin, et al. Effects of confining pressure and density on mechanical properties of coarse granular material under critical state[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 94-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202105018.htm
    [31]
    XIAO Y, LIU H, DING X, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 04015031. doi: 10.1061/(ASCE)GM.1943-5622.0000538
    [32]
    XIAO Y, LIU H, CHEN Y, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. doi: 10.1061/(ASCE)EM.1943-7889.0000702
  • Cited by

    Periodical cited type(24)

    1. 方华强,丁选明,张灵芝,李一夫,王红,辛义文,彭宇,李铮. 基于粒子图像测速技术的纤维改性珊瑚泥面层龟裂模型试验研究. 岩土力学. 2025(02): 368-380 .
    2. 秦鹏举,轩龙龙,王建美,邢鲜丽. 干湿循环作用下非饱和压实黄土变形和电阻率特征的室内试验. 同济大学学报(自然科学版). 2025(04): 565-573 .
    3. 刘晓红,王宇鑫,刘昱辰,蔡海星,刘三县. 考虑填土压实度的主动破裂带模型试验研究. 湖南理工学院学报(自然科学版). 2025(01): 37-44 .
    4. 牟春梅,李刘悦,夏燚. 基于摄影测量的三轴土体剪切带演化规律. 工程科学学报. 2024(05): 927-936 .
    5. 高乾丰,吴昕阳,曾铃,余慧聪,余涵. 红黏土裂隙湿化自愈行为及强度影响机制. 中国公路学报. 2024(06): 157-168 .
    6. 张少卫,党发宁,范翔宇,管浩. 机制砂级配及含量对压实膨胀土干缩裂隙演化规律. 西安工业大学学报. 2024(03): 366-374 .
    7. 胡长明,胡婷婷,朱武卫,袁一力,杨晓,柳明亮,侯旭辉. 干湿循环作用下压实黄土裂隙演化特征. 长江科学院院报. 2024(08): 96-103+112 .
    8. 张红日,杨济铭,徐永福,肖杰,韩仲,汪磊,林宇亮. 基于数字图像相关技术的膨胀土三维裂隙扩展特性研究. 岩土力学. 2024(S1): 309-323 .
    9. 韩杰欣,邓芷慧,王旌靡,邓羽松,黄智刚,段晓倩. 干湿交替条件下花岗岩崩岗区土壤裂隙发育规律. 水土保持学报. 2024(05): 262-271 .
    10. 杨济铭,张红日,陈林,徐永福. 基于数字图像相关技术的膨胀土边坡裂隙形态演化规律分析. 中南大学学报(自然科学版). 2022(01): 225-238 .
    11. 任意,江兴元,吴长虹,孟生勇,赵珍贤. 干湿循环下红黏土斜坡裂隙性和水土响应试验研究. 水利水电技术(中英文). 2022(04): 172-179 .
    12. 龙郧铠,张家明,陈茂. 中国南方碳酸盐岩上覆红黏土龟裂研究进展. 武汉理工大学学报(交通科学与工程版). 2022(03): 506-512 .
    13. 李关洋,顾凯,王翔,施斌. 含裂隙膨胀土无侧限抗压强度特征试验研究. 水文地质工程地质. 2022(04): 62-70 .
    14. 祝艳波,刘耀文,郑慧涛,赵丹,丁绮萱,兰恒星. 基于DIC技术的三趾马红土表面干缩裂纹扩展与自愈规律. 工程地质学报. 2022(04): 1157-1168 .
    15. 王崇宇,刘晓平,曹周红,毛文涛,蔡忠志. 有限宽度土体被动土压力及滑裂面试验研究. 地下空间与工程学报. 2022(04): 1250-1258+1265 .
    16. 汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 .
    17. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 .
    18. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 .
    19. 王娜,王佳妮,张晓明,段晓阳. 控制厚度条件下崩岗土体的裂隙演化特征. 水土保持学报. 2021(06): 175-182 .
    20. 张曼婷,吴明亮,陈爱军,潘晓屹,李晨嘉,黄文昭,李文涛. 基于DIC技术的红黏土干缩开裂试验研究. 湖南城市学院学报(自然科学版). 2021(06): 7-11 .
    21. 陈爱军,陈俊桦,程峰,吴迪. 湖南邵阳地区高液限红黏土干缩裂隙演化过程的量化分析. 农业工程学报. 2021(20): 146-153 .
    22. 蔡正银,朱锐,黄英豪,张晨,郭万里,陈皓. 冻融过程对膨胀土渠道边坡劣化模式的影响. 水利学报. 2020(08): 915-923 .
    23. 唐朝生. 极端气候工程地质:干旱灾害及对策研究进展. 科学通报. 2020(27): 3009-3027+3008 .
    24. 史晓东,刘洋. 基于特征显著性的地震灾害发生后建筑物裂缝智能检测模型. 灾害学. 2020(04): 38-42 .

    Other cited types(17)

Catalog

    Article views (554) PDF downloads (150) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return