Citation: | LIU Hao, TANG Chaosheng, LÜ Chao, ZHANG Junzheng, PAN Xiaohua, WANG Baojun. Effects and mechanisms of mineral composition of sand on MICP process[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1956-1964. DOI: 10.11779/CJGE20230431 |
[1] |
程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. http://cge.nhri.cn/article/id/15257
CHENG Xiaohui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese) http://cge.nhri.cn/article/id/15257
|
[2] |
赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京: 中国地质大学(北京), 2014.
ZHAO Qian. Experimental Study on Soil Improvement Using Microbial induced Calcite Precipitation (MICP)[D]. Beijing: China University of Geosciences(Beijing), 2014. (in Chinese)
|
[3] |
董博文, 刘士雨, 俞缙, 等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm
DONG Bowen, LIU Shiyu, YU Jin, et al. Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42(4): 1104-1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm
|
[4] |
VAN PAASSEN L. Biogrout, Ground Improvement by Microbial Induced Carbonate Precipitation[D]. Netherlands: Delft University of Technology, 2009.
|
[5] |
刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. doi: 10.11779/CJGE201801002
LIU Hanlong, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) doi: 10.11779/CJGE201801002
|
[6] |
钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm
QIAN Chunxiang, WANG Anhui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm
|
[7] |
李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm
LI Chi, WANG Shuo, WANG Yanxing, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm
|
[8] |
何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008
HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008
|
[9] |
刘士雨, 俞缙, 曾伟龙, 等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报, 2020, 39(1): 191-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001020.htm
LIU Shiyu, YU Jin, ZENG Weilong, et al. Repair effect of tabia cracks with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 191-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001020.htm
|
[10] |
孙潇昊, 缪林昌, 吴林玉, 等. 低温条件微生物MICP沉淀产率试验研究[J]. 岩土工程学报, 2019, 41(6): 1133-1138. doi: 10.11779/CJGE201906018
SUN Xiaohao, MIAO Linchang, WU Linyu, et al. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. (in Chinese) doi: 10.11779/CJGE201906018
|
[11] |
LÜ C, TANG C S, ZHU C, et al. Environmental dependence of microbially induced calcium carbonate crystal precipitations: experimental evidence and insights[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(7): 04022050. doi: 10.1061/(ASCE)GT.1943-5606.0002827
|
[12] |
DYER M, VIGANOTTI M. Oligotrophic and eutrophic MICP treatment for silica and carbonate sands[J]. Bioinspired Biomimetic and Nanobiomaterials, 2017, 6(3): 168-183. doi: 10.1680/jbibn.16.00002
|
[13] |
MONTOYA B M. Bio-Mediated Soil Improvement and the Effect of Cementation on the Behavior, Improvement, and Performance of Sand[D]. Davis: University of California, 2012.
|
[14] |
CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures: Ⅱ Adiabatic principle of X-ray diffraction analysis of mixtures[J]. Journal of Applied Crystallography, 1974, 7(6): 526-531. doi: 10.1107/S0021889874010387
|
[15] |
DOWNS R T, HALL-WALLACE M. The American mineralogist crystal structure database[J]. American Mineralogist, 2003, 88(1): 247-250.
|
[16] |
SEIFAN M, BERENJIAN A. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete[J]. World Journal of Microbiology and Biotechnology, 2018, 34(11): 115-168.
|
[17] |
GÖRGEN S, BENZERARA K, SKOURI-PANET F, et al. The diversity of molecular mechanisms of carbonate biomineralization by bacteria[J]. Discover Materials, 2020, 1(1): 1-20.
|
[18] |
DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029
|
[19] |
ZHONG H, LIU G S, JIANG Y B, et al. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: a review[J]. Biotechnology Advances, 2017, 35(4): 490-504. doi: 10.1016/j.biotechadv.2017.03.009
|
[20] |
LIU Y, ZHANG C, HILPERT M, et al. Transport of Cryptosporidium parvum oocysts in a silicon micromodel[J]. Environ Sci Technol, 2012, 46(3): 1471-1479. doi: 10.1021/es202567t
|
[21] |
HOGG R, HEALY T W, FUERSTENAU D W. Mutual coagulation of colloidal dispersions[J]. Transactions of The Faraday Society, 1966, 62: 1638-1651. doi: 10.1039/tf9666201638
|
[22] |
GREGORY J. Approximate expressions for retarded van der waals interaction[J]. Journal of Colloid and Interface Science, 1981, 83(1): 138-145. doi: 10.1016/0021-9797(81)90018-7
|
[23] |
LIU Y, KUHLENSCHMIDT M S, KUHLENSCHMIDT T B, et al. Composition and conformation of cryptosporidium parvum oocyst wall surface macromolecules and their Effect on Adhesion Kinetics of oocysts on quartz surface[J]. Biomacromolecules, 2010, 11(8): 2109-2115. doi: 10.1021/bm100477j
|
[24] |
SHARMA P K, HANUMANTHA RAO K. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry[J]. Advances in Colloid and Interface Science, 2002, 98(3): 341-463. doi: 10.1016/S0001-8686(02)00004-0
|
[25] |
VAN OSS C J. Acid-base interfacial interactions in aqueous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 78: 1-49.
|
[26] |
JANCZUK B, ZDZIENNICKA A. A study on the components of surface free energy of quartz from contact angle measurements[J]. Journal of Materials Science, 1994, 29(13): 3559-3564. doi: 10.1007/BF00352063
|
[27] |
HOLYSZ L, CHIBOWSKI E. Surface free energy components of calcium carbonate and their changes due to radiofrequency electric field treatment[J]. Journal of Colloid and Interface Science, 1994, 164(1): 245-251. doi: 10.1006/jcis.1994.1163
|
[28] |
YOREO J D, VEKILOV P G. Principles of crystal nucleation and growth[J]. Reviews in Mineralogy & Geochemistry, 2003, 54: 57-93.
|
[29] |
邬冠群. 造岩矿物表面性质对碳酸钙矿物成核生长过程影响研究[D]. 南京: 南京大学, 2021.
WU Guanqun. The Effect of Surface Properties of Rock-forming Minerals on Nucleation and Growth of Calccium Carbonates[D]. Nanjing: Nanjing University, 2021. (in Chinese)
|
[30] |
LIOLIOU M G, PARASKEVA C A, KOUTSOUKOS P G, et al. Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz[J]. Journal of Colloid and Interface Science, 2007, 308(2): 421-428. doi: 10.1016/j.jcis.2006.12.045
|
[31] |
CHANG R, KIM S, LEE S, et al. Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism[J]. Frontiers in Energy Research, 2017, 5: 1-12.
|
[32] |
OGINO T, SUZUKI T, SAWADA K. The formation and transformation mechanism of calcium carbonate in water[J]. Geochimica et Cosmochimica Acta, 1987, 51(10): 2757-2767.
|
[33] |
CHEN J, XIANG L. Controllable synthesis of calcium carbonate polymorphs at different temperatures[J]. Powder Technology, 2009, 189(1): 64-69.
|
[34] |
ZHANG W, JU Y, ZONG Y, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environ Sci Technol, 2018, 52(16): 9266-9276.
|
[35] |
KONOPACKA-LYSKAWA D. Synthesis methods and favorable conditions for spherical vaterite precipitation: a review[J]. Crystals, 2019, 9(4): 223.
|
[36] |
TONG H, MA W T, WANG L L, et al. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a l-aspartic acid inducing process[J]. Biomaterials, 2004, 25(17): 3923-3929.
|
[37] |
SONDI I, SALOPEK-SONDI B. Influence of the primary structure of enzymes on the formation of CaCO2 polymorphs: a comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases[J]. Langmuir, 2005, 21(19): 8876-8882.
|
[38] |
RODRIGUEZ-NAVARRO C, JROUNDI F, SCHIRO M, et al. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation[J]. Appl Environ Microbiol, 2012, 78(11): 4017-4029.
|
[39] |
RONG H, QIAN C X. Binding functions of microbe cement[J]. Advanced Engineering Materials, 2015, 17(3): 334-340.
|
[40] |
SUN T, HAO W T, LI J R, et al. Preservation properties of in situ modified CaCO3–chitosan composite coatings[J]. Food Chemistry, 2015, 183: 217-226.
|