Citation: | ZHANG Wenjie, JIA Zhiwei, LI Xibin. Research on long-term stability of fly ash solidified by calcium aluminate cement-based materials through accelerated ageing test[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 2002-2009. DOI: 10.11779/CJGE20230412 |
[1] |
中华人民共和国国家统计局. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
National Bureau of Statistics of China. China Statistical Yearbook of 2020[M]. Baijing: China Statistical Press, 2020. (in Chinese)
|
[2] |
LIMA A T, OTTOSEN L M, RIBEIRO A B. Assessing fly ash treatment: remediation and stabilization of heavy metals[J]. Journal of Environmental Management, 2012, 95: S110-S115.
|
[3] |
WANG L, ZHANG Y Y, CHEN L, et al. Designing novel magnesium oxysulfate cement for stabilization/solidification of municipal solid waste incineration fly ash[J]. Journal of Hazardous Materials, 2022, 423: 127025. doi: 10.1016/j.jhazmat.2021.127025
|
[4] |
冯世进, 李浩东, 曹剑锋, 等. 入场飞灰重金属协同处置及环境风险评价研究[J]. 岩土工程学报, 2023, 45(4): 699-708. doi: 10.11779/CJGE20220004
FENG Shijin, LI Haodong, CAO Jianfeng, et al. Evaluation of collaborative disposal of heavy metals in MSWI fly ash along with its environmental risk assessment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 699-708. (in Chinese) doi: 10.11779/CJGE20220004
|
[5] |
LI W H, GU K, YU Q W, et al. Leaching behavior and environmental risk assessment of toxic metals in municipal solid waste incineration fly ash exposed to mature landfill leachate environment[J]. Waste Management, 2021, 120: 68-75. doi: 10.1016/j.wasman.2020.11.020
|
[6] |
FAN C, WANG B, ZHANG T. Review on cement stabilization/solidification of municipal solid waste[J]. Advances in Materials Science and Engineering, 2018: 5120649.
|
[7] |
DU Y J, WEI M L, REDDY K R, et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization[J]. Journal of Environmental Management, 2014, 146: 179-188. doi: 10.1016/j.jenvman.2014.07.035
|
[8] |
GARG N, WHITE C E. Mechanism of zinc oxide retardation in alkali-activated materials: an in situ X-ray pair distribution function investigation[J]. Journal of Materials Chemistry A, 2017, 5(23): 11794. doi: 10.1039/C7TA00412E
|
[9] |
YAKUBU Y, ZHOU J, PING D, et al. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash[J]. Journal of Environmental Management, 2018, 207: 243-248.
|
[10] |
MA W C, CHEN D M, PAN M H, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study[J]. Journal of Environmental Management, 2019, 247: 169-177.
|
[11] |
CHEN W M, WANG F, LI Z, et al. A comprehensive evaluation of the treatment of lead in MSWI fly ash by the combined cement solidification and phosphate stabilization process[J]. Waste Management, 2020, 114: 107-114. doi: 10.1016/j.wasman.2020.06.041
|
[12] |
NAVARRO-BLASCO I, DURAN A, SIRERA R, et al. Solidification/stabilization of toxic metals in calcium aluminate cement matrices[J]. Journal of Hazardous Materials, 2013, 260: 89-103. doi: 10.1016/j.jhazmat.2013.04.048
|
[13] |
CALGARO L, CONTESSI S, BONETTO A, et al. Calcium aluminate cement as an alternative to ordinary Portland cement for the remediation of heavy metals contaminated soil: mechanisms and performance[J]. Journal of Soils and Sediments, 2021, 21(4): 1755-1768. doi: 10.1007/s11368-020-02859-x
|
[14] |
CONTESSI S, CALGARO L, DALCONI M C, et al. Stabilization of lead contaminated soil with traditional and alternative binders[J]. Journal of Hazardous Materials, 2020, 382: 120990. doi: 10.1016/j.jhazmat.2019.120990
|
[15] |
WEI G X, LIU H Q, ZHANG S G. Using of different type cement in solidification/stabilization of MSWI fly ash[J]. Advanced Materials Research, 2011(291-294): 1870-1874.
|
[16] |
CHEN L, WANG L, CHO D W, et al. Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials[J]. Journal of Cleaner Production, 2019, 222: 335-343. doi: 10.1016/j.jclepro.2019.03.057
|
[17] |
CHEN L, WANG Y S, WANG L, et al. Stabilisation/ solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement[J]. Journal of Hazardous Materials, 2021, 408: 124404. doi: 10.1016/j.jhazmat.2020.124404
|
[18] |
DU B, LI J T, FANG W, et al. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash[J]. Environmental Pollution, 2019, 250: 68-78. doi: 10.1016/j.envpol.2019.03.124
|
[19] |
SUZUKI T, NAKAMURA A, NIINAE M, et al. Lead immobilization in artificially contaminated kaolinite using magnesium oxide-based materials: immobilization mechanisms and long-term evaluation[J]. Chemical Engineering Journal, 2013, 232: 380-387. doi: 10.1016/j.cej.2013.07.121
|
[20] |
SHEN Z T, HOU D Y, XU W D, et al. Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing[J]. Science of the Total Environment, 2018, 643: 1571-1578. doi: 10.1016/j.scitotenv.2018.06.321
|
[21] |
DU E Z, DONG D, ZENG X T, et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China[J]. Science of the Total Environment, 2017, 605: 764-769.
|
[22] |
TESSIER A P, CAMPBELL P, BISSON M X. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
|
[23] |
LIU W G, DUAN H, WEI D Z, et al. Stability of diethyl dithiocarbamate chelates with Cu(II), Zn(II) and Mn(II)[J]. Journal of Molecular Structure, 2019, 1184: 375-381. doi: 10.1016/j.molstruc.2019.02.009
|
[24] |
JIAO F C, ZHANG L, DONG Z B, et al. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J]. Fuel Processing Technology, 2016, 152: 108-115. doi: 10.1016/j.fuproc.2016.06.013
|
[25] |
NAG M, SAFFARZADEH A, NOMICHI T, et al. Enhanced Pb and Zn stabilization in municipal solid waste incineration fly ash using waste fishbone hydroxyapatite[J]. Waste Management, 2020, 118: 281-290. doi: 10.1016/j.wasman.2020.08.026
|
[1] | JIANG Shuihua, YUAN Zhirong, LIU Xian, HUANG Jinsong, ZHOU Chuangbing. Rainfall infiltration model considering spatial variability of multiple layers in transition layer and its application in slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 255-264. DOI: 10.11779/CJGE20230996 |
[2] | DENG Zhiping, ZHONG Min, PAN Min, ZHENG Kehong, NIU Jingtai, JIANG Shuihua. Slope reliability analysis considering spatial variability of parameters based on efficient surrogate model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 273-281. DOI: 10.11779/CJGE20221338 |
[3] | ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013 |
[4] | JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 900-907. DOI: 10.11779/CJGE202005012 |
[5] | CHEN Zhao-hui, LEI Jian, HUANG Jing-hua, CHENG Xiao-hui, ZHANG Zhi-chao. Finite element limit analysis of slope stability considering spatial variability of soil strengths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 985-993. DOI: 10.11779/CJGE201806003 |
[6] | WANG Chang-hong, ZHU He-hua, XU Zi-chuan, LI Jian-gao. Ground surface settlement of shield tunnels considering spatial variability of multiple geotechnical parameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 270-277. DOI: 10.11779/CJGE201802007 |
[7] | DONG Hui, HUANG Run-qiu, LUO Xiao, LUO Zheng-dong, JIANG Xiu-zi. Spatial distribution and variability of infiltration characteristics for shallow slope of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1501-1509. DOI: 10.11779/CJGE201708018 |
[8] | YANG Ge, ZHU Sheng. Seismic response of rockfill dams considering spatial variability of rockfill materials via random finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1822-1832. DOI: 10.11779/CJGE201610011 |
[9] | TANG Yu-geng, KUNG Gordon Tung-chin. Basal-heave analysis of a braced excavation considering spatial variability of soft ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 542-545. |
[10] | QI Xiao-hui, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Stochastic analysis method of critical slip surfaces in soil slopes considering spatial variability[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 745-753. |