• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Yingguo, RAO Yu, CHAI Chaozheng, WU Xinxia, YANG Zhaowei, ZHOU Xianping. Influence mechanism of rock joints on blasting fragmentation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1870-1879. DOI: 10.11779/CJGE20230410
Citation: HU Yingguo, RAO Yu, CHAI Chaozheng, WU Xinxia, YANG Zhaowei, ZHOU Xianping. Influence mechanism of rock joints on blasting fragmentation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1870-1879. DOI: 10.11779/CJGE20230410

Influence mechanism of rock joints on blasting fragmentation

More Information
  • Received Date: May 09, 2023
  • Available Online: April 25, 2024
  • The influences of rock joints on the formation of blasting fragmentation have always been a hot issue in blasting engineering, which is one of the most important factors affecting the construction efficiency and long-term operation safety. Based on the explosion tests on the graded materials of Yulongkashi Water Conservancy Project, the influences of rock joints on the formation of blasting fragmentation are studied. The test results show that the fragmentation with rock particle size below 5 mm is mainly formed by the blasting loads and dynamic compressive strength but rarely by the rock joints. However, the influences of the rock joints on the fragmentation rock particle size above 5 mm are significant, which is reflected in the partition characteristics for the formation of rock blasting fragmentation. Further, the numerical simulation of rock blasting fragmentation is carried out by using the LS-DYNA secondary development technology, and the mechanical mechanism of the rock joints on rock blasting fragmentation is analyzed. The results show that the rock joints greatly affect the stress wave propagation in the fracture zone but produce a small effect on the formation of the fragmentation wiht small rock particle size, which is verified by the test results. Based on the dual influences of rock blasting fragmentation and rock joints, a partition prediction model for the rock blasting fragmentation is proposed. The rock blast fragmentation for many test samples is predicted by the proposed model and the existing models. By comparing the predicted results, it is found that the proposed model has a higher accuracy in predicting rock blasting fragmentation.
  • [1]
    高启栋, 卢文波, 冷振东, 等. 岩石爆破中孔内起爆位置对爆炸能量传输的调控作用研究[J]. 岩土工程学报, 2020, 42(11): 2050-2058. doi: 10.11779/CJGE202011010

    GAO Qidong, LU Wenbo, LENG Zhendong, et al. Regulating effect of detonator location in blast-holes on transmission of explosion energy in rock blasting[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2050-2058. (in Chinese) doi: 10.11779/CJGE202011010
    [2]
    吴新霞, 彭朝晖, 张正宇. 面板堆石坝级配料开采爆破块度预报模型及爆破设计参数优化研究[J]. 工程爆破, 1996, 2(4): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-GCBP604.020.htm

    WU Xinxia, PENG Zhaohui, ZHANG Zhengyu. Study on optimization of blasting fragmentation forecasting model and blasting design parameters of the gradating material mining of the rockfill dam with concrete facing[J]. Engineering Blasting, 1996, 2(4): 95-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCBP604.020.htm
    [3]
    张有才, 朱传云. 堆石坝级配料爆破块度分布模型的研究[J]. 爆破, 2005, 22(1): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO20050100A.htm

    ZHANG Youcai, ZHU Chuanyun. Blasting fragmentation forecasting model for concrete panel rock-fill dam[J]. Blasting, 2005, 22(1): 44-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO20050100A.htm
    [4]
    蔡建德, 郑炳旭, 汪旭光, 等. 多种规格石料开采块度预测与爆破控制技术研究[J]. 岩石力学与工程学报, 2012, 31(7): 1462-1468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201207020.htm

    CAI Jiande, ZHENG Bingxu, WANG Xuguang, et al. Research on blasting control technique and block size prediction of different dimensions stones[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1462-1468. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201207020.htm
    [5]
    吴新霞, 胡英国, 刘美山, 等. 水利水电工程爆破技术研究进展[J]. 长江科学院院报, 2021, 38(10): 112-120, 147. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202110023.htm

    WU Xinxia, HU Yingguo, LIU Meishan, et al. Research progress of blasting technology in hydropower engineering[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 112-120, 147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202110023.htm
    [6]
    GRADY D E, KIPP M E. Dynamic rock fragmentation[J]. Fracture Mechanics of Rock, 1987, 10: 429-475.
    [7]
    CHUNG S H, KATSABANIS P D. Fragmentation prediction using improved engineering formulae[J]. Fragblast, 2000, 4(3/4): 198-207.
    [8]
    CUNNINGHAM C V B. The Kuz-Ram fragmentation model–20 years on[C]// Brighton Conference Proceedings. Brighton, UK: European Federation of Explosives Engineer, 2005.
    [9]
    KUZNETSOV V M. The mean diameter of the fragments formed by blasting rock[J]. Soviet Mining Science, 1973, 9(2): 144-148. doi: 10.1007/BF02506177
    [10]
    ROSIN P A U L. Laws governing the fineness of powdered coal[J]. Journal of Institute of Fuel, 1933, 7: 29-36.
    [11]
    武仁杰, 李海波, 于崇, 等. 基于统计分级判别的爆破块度预测模型[J]. 岩石力学与工程学报, 2018, 37(1): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801014.htm

    WU Renjie, LI Haibo, YU Chong, et al. Model for blasting fragmentation prediction based on statistical classification[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801014.htm
    [12]
    吴发名, 刘勇林, 李洪涛, 等. 基于原生节理统计和爆破裂纹模拟的堆石料块度分布预测[J]. 岩石力学与工程学报, 2017, 36(6): 1341-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706005.htm

    WU Faming, LIU Yonglin, LI Hongtao, et al. Fragmentation distribution prediction of rockfill materials based on statistical results of primary joints and simulation of blasting cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1341-1352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706005.htm
    [13]
    王仁超, 连嘉欣, 邸阔. 结合深度学习和NCFS算法的堆石料粒度分布智能检测方法[J]. 水利学报, 2021, 52(9): 1103-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202109010.htm

    WANG Renchao, LIAN Jiaxin, DI Kuo. Intelligent detection method of rockfill particle size distribution based on deep-learning and NCFS algorithm[J]. Journal of Hydraulic Engineering, 2021, 52(9): 1103-1115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202109010.htm
    [14]
    周继国, 张智宇, 王建国, 等. 最小抵抗线对岩石破碎块度影响的能量分析[J]. 地下空间与工程学报, 2021, 17(1): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202101015.htm

    ZHOU Jiguo, ZHANG Zhiyu, WANG Jianguo, et al. Energy analysis on the effect of minimum burden on rock fragmentation[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 135-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202101015.htm
    [15]
    PAINE A S, PLEASE C P. An improved model of fracture propagation by gas during rock blasting: some analytical results[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 699-706.
    [16]
    SHOCKEY D A, CURRAN D R, SEAMEN L. Fragmentation of rock under dynamic loads[J]. Int J Rock Mech Sci & Geomech Abstr, 1974, 11: 303-317.
    [17]
    ROSSMANITH H P, FOURNEY W L. Fracture initiation and stress wave diffraction at cracked interfaces in layered media: I brittle/brittle transition[J]. Rock Mechanics, 1982, 14(4): 209-233. doi: 10.1007/BF01596617
    [18]
    张继春. 节理岩体爆破的损伤机理及其块度模型[J]. 中国有色金属学报, 1999, 9(3): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ199903043.htm

    ZHANG Jichun. Damage mechanism of blasting in jointed rock masses and its fragment size model[J]. The Chinses Journal of Nonferrous Metals, 1999, 9(3): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ199903043.htm
    [19]
    郭文章, 王树仁. 节理岩体爆破块度预测的力学模型探讨[J]. 爆破, 1997, 14(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO199703006.htm

    GUO Wenzhang, WNAG Shuren. Discussion on the mechanical model of jointed rock mass fragmentation forecast by blasting[J]. Blasting, 1997, 14(3): 31-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO199703006.htm
    [20]
    ALER J, DU MOUZA J, ARNOULD M. Evaluation of blast fragmentation efficiency and its prediction by multivariate analysis procedures[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(2): 189-196.
    [21]
    石根华. 一般自由面上多面节理生成、节理块切割与关键块搜寻方法[J]. 岩石力学与工程学报, 2006, 25(11): 2161-2170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200611002.htm

    SHI Genhua. Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2161-2170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200611002.htm
    [22]
    邬爱清. 基于关键块体理论的岩体稳定性分析方法及其在三峡工程中的应用[J]. 长江科学院院报, 2019, 36(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201902004.htm

    WU Aiqing. Series methods of analyzing rock mass stability based on key block theory and their applications to Three Gorges Project[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(2): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201902004.htm
  • Cited by

    Periodical cited type(16)

    1. 张期树,董俊利,徐方,冷伍明,吴爽爽,王文兵. 预应力水平和加固模式对铁路路基变形特性的影响. 中国铁道科学. 2025(02): 18-28 .
    2. 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性. 浙江大学学报(工学版). 2024(03): 547-556+569 .
    3. 崔颖辉,罗强,冯桂帅,王腾飞. 一种惯性式路基激振装置的研发与现场标定. 铁道学报. 2024(03): 184-192 .
    4. 徐方,翟斌,冷伍明,叶新宇,张期树,赵春彦. 基于大型动三轴试验和神经网络的粗粒土临界动应力研究. 铁道学报. 2023(05): 119-127 .
    5. 冷伍明,董俊利,艾希,徐方,张期树. 新型预应力路堤侧压力板设计间距研究. 中南大学学报(自然科学版). 2023(04): 1379-1392 .
    6. 张期树,冷伍明,徐方,阮波,董俊利. 新型预应力路基静力加固性能与机理研究. 铁道科学与工程学报. 2023(07): 2488-2499 .
    7. 董俊利,冷伍明,张期树,徐方,聂如松. 重载列车作用下新型预应力路基动应力响应规律研究. 中南大学学报(自然科学版). 2023(08): 3286-3302 .
    8. 徐方,董俊利,冷伍明,张期树,阮波,邓志龙. 重载列车荷载下新型预应力路基的加速度响应试验研究. 土木工程学报. 2023(10): 149-159 .
    9. 冷伍明,董俊利,徐方,赵春彦,阮波,叶新宇,张期树. 预应力路堤侧压力板间距确定方法初探. 铁道科学与工程学报. 2022(01): 100-111 .
    10. 冷伍明,邓志龙,徐方,张期树,董俊利,刘思慧. 基于路基土蠕变效应的路基预应力损失模型研究. 岩土力学. 2022(06): 1671-1682 .
    11. 徐方,张期树,冷伍明,邓志龙,董俊利,刘思慧. 基于附加应力扩散效应的新型预应力路堤稳定性分析. 岩土力学. 2022(S1): 431-442 .
    12. 贺敏,仰宗宝,徐卓君,曹文贵,张超,徐赞. 地基附加应力改进计算方法及其规律分析. 湖南工业大学学报. 2022(05): 20-28 .
    13. 聂如松,杜市委,阮波,张向京. 考虑荷载间歇的细粒土填料累积塑性应变与临界动应力试验研究. 铁道学报. 2021(10): 98-108 .
    14. 艾希,冷伍明,徐方,张期树,翟斌. 新型预应力路基水平附加应力计算的图表法. 岩土力学. 2020(01): 253-266+277 .
    15. 冷伍明,张期树,徐方,冷慧康,杨奇,聂如松. 铁路预应力路堤加固技术数值研究. 铁道工程学报. 2020(01): 6-11+114 .
    16. 储灿清. 基于多元分析的地铁车站深基坑形变规律研究. 测绘. 2020(01): 35-40 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return