• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QI Yuliang, TANG Mengxiong, HUANG Keke, LIANG Weijian. Experimental study on bending resistance of joints of large-diameter double-layer-reinforced pipe piles[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1553-1560. DOI: 10.11779/CJGE20230357
Citation: QI Yuliang, TANG Mengxiong, HUANG Keke, LIANG Weijian. Experimental study on bending resistance of joints of large-diameter double-layer-reinforced pipe piles[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1553-1560. DOI: 10.11779/CJGE20230357

Experimental study on bending resistance of joints of large-diameter double-layer-reinforced pipe piles

Funds: 

the National Natural Science Foundation of China - General Program 52378332

the Guangzhou Municipal Construction Group Co., Ltd. Technology Project [2022]-KJ014

the Guangzhou Municipal Construction Group Co., Ltd. Technology Project [2020]-KJ017

More Information
  • Received Date: April 23, 2023
  • Revised Date: December 29, 2024
  • Accepted Date: January 07, 2025
  • Available Online: January 07, 2025
  • Published Date: January 08, 2025
  • The failure of welded joint of the traditional lateral force pipe piles due to insufficient bending capacity has become a key problem affecting its safety and use. In this study, the full-scale model tests are carried out based on the joints of large-diameter double-layer-reinforced pipe piles, and the influences of reinforcement measures such as optimizing double-reinforced structure, improving reinforcement anchorage mode, improving concrete strength grade, adding steel fiber on the flexural performance, deformation and failure characteristics, crack distribution characteristics of joints of pipe piles are studied. The results show that the ultimate bending moment of joints of a welded pipe pile can not reach the standard value of the whole pile, and the main failure mode is that the upper part of the two ends of the plate is squeezed and deformed, the lower part of the pile is opened in a drum shape, the concrete on the upper edge of the pile hoop is crushed, and the concrete under the pile body is deformed and cracked. The strengthening measures only raise the threshold of cracking moment of joints of two pipe piles to a certain extent, and the bending capacity of joints of pipe piles decreases with the increase of the number of holes in the end plates. Finally, a new type of joint of bending resistant pipe piles is proposed, which adopts the structural form of stiffener joint at the sleeve and end plate, and replaces the steel fiber-reinforced concrete pile body at the pile joint. This kind of joint effectively improves the flexural performance of the joints of pipe piles, and makes the pipe piles have good toughness and ductility.
  • [1]
    侯振坤, 唐孟雄, 胡贺松, 等. 随钻跟管桩竖向承载性能原位试验与室内物理模拟试验对比研究[J]. 岩土力学, 2021, 42(2): 419-429.

    HOU Zhenkun, TANG Mengxiong, HU Hesong, et al. Comparative study on the vertical load-bearing capacity of the drilling with pre-stressed concrete pipe cased pile based on in situ and physical simulation tests[J]. Rock and Soil Mechanics, 2021, 42(2): 419-429. (in Chinese)
    [2]
    刘春林, 唐孟雄, 胡贺松, 等. 考虑桩底沉渣的随钻跟管桩竖向承载特性模型试验研究[J]. 岩土力学, 2021, 42(1): 177-185.

    LIU Chunlin, TANG Mengxiong, HU Hesong, et al. An experimental study of vertical bearing capacity of DPC piles considering sediment effect at pile bottom[J]. Rock and Soil Mechanics, 2021, 42(1): 177-185. (in Chinese)
    [3]
    HUANG F Y, WU S W, LUO X Y, et al. Pseudo-static low cycle test on the mechanical behavior of PHC pipe piles with consideration of soil-pile interaction[J]. Engineering Structures, 2018, 171: 992-1006. doi: 10.1016/j.engstruct.2018.01.060
    [4]
    唐孟雄, 戚玉亮, 周治国, 等. 填芯PHC管桩桩身抗压承载力试验与理论计算方法研究[J]. 建筑结构, 2015, 45(1): 67-71, 86.

    TANG Mengxiong, QI Yuliang, ZHOU Zhiguo, et al. Study on experiment and theoretical calculation method of compressive bearing capacity of filled PHC pipe piles[J]. Building Structure, 2015, 45(1): 67-71, 86. (in Chinese)
    [5]
    唐孟雄, 戚玉亮, 胡贺松. 大直径随钻跟管桩套箍对桩头质量的影响分析[J]. 建筑结构, 2016, 46(S1): 791-794.

    TANG Mengxiong, QI Yuliang, HU Hesong. Analysis on the influence of large diameter pipe pile hoop while drilling on the quality of pile head[J]. Building Structure, 2016, 46(S1): 791-794. (in Chinese)
    [6]
    唐孟雄, 戚玉亮, 周治国, 等. 空心与填芯PHC管桩抗弯试验及其理论计算研究[J]. 岩土工程学报, 2013, 35(增刊2): 1075-1080. https://cge.nhri.cn/article/id/15553

    TANG Mengxiong, QI Yuliang, ZHOU Zhiguo, et al. Bending test and theoretical calculation of hollow and core-filled PHC pipe piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 1075-1080. (in Chinese) https://cge.nhri.cn/article/id/15553
    [7]
    KOU H L, GUO W, ZHANG M Y. Field study of set-up effect in open-ended PHC pipe piles[J]. Marine Georesources & Geotechnology, 2017, 35(2): 208-215.
    [8]
    郭杨, 吴平. 复合配筋预应力混凝土管桩受弯与受剪性能试验研究[J]. 施工技术, 2021, 50(2): 95-101.

    GUO Yang, WU Ping. Experimental study on flexural and shear behaviors of pre-stressed concrete pipe with hybrid reinforcement[J]. Construction Technology, 2021, 50(2): 95-101. (in Chinese)
    [9]
    戚玉亮, 大塚久哲. ABAQUS动力无限元人工边界研究[J]. 岩土力学, 2014, 35(10): 3007-3012.

    QI Yuliang, HISANORI O. Study of ABAQUS dynamic infinite element artificial boundary[J]. Rock and Soil Mechanics, 2014, 35(10): 3007-3012. (in Chinese)
    [10]
    戚玉亮, 大塚久哲. 考虑土-桩-结构相互作用的群桩振动台试验研究[J]. 岩土工程学报, 2013, 35(增刊2): 1024-1027. https://cge.nhri.cn/article/id/15541

    QI Yuliang, HISANORI O. Shaking table test of pile groups considering soil-pile-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 1024-1027. (in Chinese) https://cge.nhri.cn/article/id/15541
    [11]
    戚玉亮, 冯紫良, 余俊, 等. 泰州大桥北塔群桩基础三维动力非线性抗震计算研究[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3071-3081.

    QI Yuliang, FENG Ziliang, YU Jun, et al. Three-dimensional dynamic nonlinear seismic calculation of pile foundation of North Tower Group of Taizhou Bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3071-3081. (in Chinese)
    [12]
    戚玉亮, 王同旭, 赵斌. 车集矿深部三维初始地应力测量研究[J]. 岩土工程学报, 2010, 32(7): 1005-1010. https://cge.nhri.cn/article/id/13450

    QI Yuliang, WANG Tongxu, ZHAO Bin. 3D initial ground stress measurement at deep position of Juji Mine[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1005-1010. (in Chinese) https://cge.nhri.cn/article/id/13450
    [13]
    孙钧, 戚玉亮. 隧道围岩稳定性正算反演分析研究: 以厦门海底隧道穿越风化深槽施工安全监控为例介绍[J]. 岩土力学, 2010, 31(8): 2353-2360. doi: 10.3969/j.issn.1000-7598.2010.08.001

    SUN Jun, QI Yuliang. Normal calculation-back analysis of surrounding rock stability of subsee tunnel[J]. Rock and Soil Mechanics, 2010, 31(8): 2353-2360. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.08.001
    [14]
    王清, 匡红杰, 路瞳, 等. 混合配筋预应力混凝土管桩(PRC桩)受弯承载力计算[J]. 混凝土与水泥制品, 2022(8): 41-44.

    WANG Qing, KUANG Hongjie, LU Tong, et al. Calculation of flexural bearing capacity of prestressed and reinforced concrete piles(PRC piles)[J]. China Concrete and Cement Products, 2022(8): 41-44. (in Chinese)
    [15]
    王清, 匡红杰, 路瞳, 等. 混合配筋预应力混凝土管桩(PRC桩)受弯承载力计算[J]. 混凝土与水泥制品, 2022(8): 41-44.

    WANG Qing, KUANG Hongjie, LU Tong, et al. Calculation of flexural bearing capacity of prestressed and reinforced concrete piles(PRC piles)[J]. China Concrete and Cement Products, 2022(8): 41-44. (in Chinese)
    [16]
    黄广龙, 颜荣华, 周文苑, 等. 预应力混凝土管桩接头抗弯承载力试验[J]. 江苏科技大学学报(自然科学版), 2011, 25(10): 209-212.

    HUANG Guang-long, YANG Rong-hua, ZHOU Wen-yuan, et al. Experimental study on flexural bearing capacity of prestressed concrete pipe pile joints[J]. Journal of Jiangsu University of Science and Technology, 2011, 25(10): 209-212. (in Chinese)
    [17]
    TANG M X, LING Z, QI Y L. Bending strength of connection joints of prestressed reinforced concrete pipe piles[J]. Buildings, 2023, 13(1): 119.
    [18]
    沈琳, 蔡红明, 曾超峰, 等. PHC管桩抗弯承载力研究[J]. 建筑结构, 2018, 48(增刊2): 845-849.

    SHEN Lin, CAI Hongming, ZENG Chaofeng, et al. Study on flexural capacity of PHC pipe pile[J]. Building Structure, 2018, 48(S2): 845-849. (in Chinese)
    [19]
    刘岩, 谭宇胜. 钢筋混凝土受弯构件纵向配筋率的研究[J]. 建筑技术, 2006, 37(5): 389-390.

    LIU Yan, TAN Yusheng. Studies on longitudinal reinforcement ratio of flexural rc member[J]. Architecture Technology, 2006, 37(5): 389-390. (in Chinese)
    [20]
    魏宏超. 钢纤维高强混凝土的配制及其在先张法预应力高强混凝土管桩中的应用[J]. 混凝土与水泥制品, 2002(3): 28-30.

    WEI Hongchao. Preparation of high-strength steel fiber reinforced concrete and the application of it in prestressed concrete piles[J]. China Concrete and Cement Products, 2002(3): 28-30. (in Chinese)
    [21]
    戎贤, 王旭月, 李艳艳. 掺入钢纤维的PHC管桩抗震性能试验研究[J]. 建筑结构, 2014, 44(8): 10-14.

    RONG Xian, WANG Xuyue, LI Yanyan. Experimental study on seismic behavior of PHC pipe piles with steel fibers[J]. Building Structure, 2014, 44(8): 10-14. (in Chinese)
  • Cited by

    Periodical cited type(6)

    1. 贾宇峰,许米格,相彪. 红石岩堰塞坝新堆积体动三轴试验研究. 人民长江. 2024(04): 32-37 .
    2. 宋优建,杨海华,杨武,高鹏展,沈静东. 高聚物胶凝戈壁土的动残余变形特性试验研究. 地震工程与工程振动. 2024(04): 222-233 .
    3. 张宏洋,马聪,刘建龙,孙亚东,宋子屹,丁泽霖,韩鹏举. 土石坝粗粒料的湿化动力特性试验研究. 水电能源科学. 2023(05): 63-66+75 .
    4. 曹博,黄云龙,张院生,汪帅,刘士晨,刘光伟. 承载河道下高大内排土场沉降蠕变三维反演分析. 安全与环境学报. 2022(03): 1306-1314 .
    5. 邵晓泉,迟世春,张宗亮. 考虑颗粒破碎的堆石料动力变形特性模拟. 工程科学与技术. 2021(04): 191-199 .
    6. 谭凡,张婷,徐晗. 基于大型动三轴试验的筑坝砂砾石料动模量和阻尼比研究. 长江科学院院报. 2020(07): 130-134 .

    Other cited types(10)

Catalog

    Article views (66) PDF downloads (8) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return