• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YAO Yangping, HE Guan, CUI Wenjie. Derivation of transformed stress method based on indirect thermodynamic method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1368-1377. DOI: 10.11779/CJGE20230332
Citation: YAO Yangping, HE Guan, CUI Wenjie. Derivation of transformed stress method based on indirect thermodynamic method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1368-1377. DOI: 10.11779/CJGE20230332

Derivation of transformed stress method based on indirect thermodynamic method

More Information
  • Received Date: April 16, 2023
  • Available Online: November 21, 2023
  • The unique plastic potential function consistent with the yield function can be directly determined by the Drucker's postulate and its associated flow law deduction after the yield function is established for the continuous materials without dilatancy, such as metals. However, a large number of test results and theoretical analyses show that the Drucker's postulate is not applicable to soils, which is a type of granular material with dilatancy, then the more universal thermodynamics is selected as a new necessary condition for correctly describing the plastic flow direction of soils. Nevertheless, the plastic flow direction cannot be determined solely by thermodynamics, which is only a necessary condition to describe the properties of materials. Therefore, the indirect thermodynamic method is developed in which the yield surface and the plastic flow direction are firstly determined with tests and then verified by thermodynamics. In addition, since the stress-strain relationships on the meridional planes corresponding to different Lode angles in the three-dimensional stress space of soils are not consistent to each other, the generalized methods are generally used to describe such mechanical characteristics of soils. Meanwhile, the generalized yield surface and plastic flow direction on different meridional planes will be different from those in the constitutive models established under triaxial compression state, so whether the generalized constitutive model conforms to the thermodynamics becomes a new problem. Therefore, the indirect thermodynamic method is used to derive a generalized method conforming to the principles of thermodynamics, which is then organized into a more practical transformed stress method by constructing the transformation stress space.
  • [1]
    DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. doi: 10.1090/qam/48291
    [2]
    ROSCOE K H, SCHOFIELD A N. Mechanical behaviour of an idealized 'wet' clay[C]// Proceedings of the ProcEuropean Conf on Soil Mechanics and Foundation Engineering. Wiesbaden, 1963.
    [3]
    ROSCOE K, BURLAND J. On the Generalized Stress-Strain Behaviour of Wet Clay[M]. Cambridge: Cambridge University Press, 1968.
    [4]
    DAFALIAS Y F. Bounding surface plasticity: Ⅰ mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987. doi: 10.1061/(ASCE)0733-9399(1986)112:9(966)
    [5]
    DAFALIAS Y F, HERRMANN L R. Bounding surface plasticity: Ⅱ application to isotropic cohesive soils[J]. Journal of Engineering Mechanics, 1986, 112(12): 1263-1291. doi: 10.1061/(ASCE)0733-9399(1986)112:12(1263)
    [6]
    HASHIGUCHI K. Plastic constitutive equations of granular materials[C]// Proceedings of the Proc US-Japan Seminar Continuum Mech Stast Appr Mech Granular Materials, Tokyo, 1978.
    [7]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [8]
    YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
    [9]
    FENG X, YAO Y P, LI R N, et al. Loading–unloading judgement for advanced plastic UH model[J]. Acta Mechanica Sinica, 2020, 36(4): 827-839. doi: 10.1007/s10409-020-00936-5
    [10]
    YAO Y P, QU S, YIN Z Y, et al. SSUH model: a small-strain extension of the unified hardening model[J]. Science China Technological Sciences, 2016, 59(2): 225-240. doi: 10.1007/s11431-015-5914-0
    [11]
    LUO T, CHEN D, YAO Y P, et al. An advanced UH model for unsaturated soils[J]. Acta Geotechnica, 2020, 15(1): 145-164. doi: 10.1007/s11440-019-00882-y
    [12]
    NEDDERMAN R M. Statics and Kinematics of Granular Materials[M]. Cambridge: Cambridge University Press, 1992.
    [13]
    ANDREOTTI B, FORTERRE Y, POULIQUEN O. Granular Media: between Fluid and Solid[M]. Cambridge: Cambridge University Press, 2013.
    [14]
    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 269: 500-527.
    [15]
    CHANG C S, YIN Z Y. Modeling stress-dilatancy for sand under compression and extension loading conditions[J]. Journal of Engineering Mechanics, 2010, 136(6): 777-786. doi: 10.1061/(ASCE)EM.1943-7889.0000116
    [16]
    YIN Z Y, CHANG C S. Stress–dilatancy behavior for sand under loading and unloading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 855-870. doi: 10.1002/nag.1125
    [17]
    WANG L Z, YIN Z Y. Stress dilatancy of natural soft clay under an undrained creep condition[J]. International Journal of Geomechanics, 2015, 15(5): 1-5.
    [18]
    GAO Z W, ZHAO J D, YIN Z Y. Dilatancy relation for overconsolidated clay[J]. International Journal of Geomechanics, 2017, 17(5): 1-20.
    [19]
    RICHMOND O, SPITZIG W. Pressure dependence and dilatancy of plastic flow [J]. Theoretical and applied mechanics, 1980, 377-386.
    [20]
    POOROOSHASB H B, HOLUBEC I, SHERBOURNE A N. Yielding and flow of sand in triaxial compression: part Ⅰ[J]. Canadian Geotechnical Journal, 1966, 3(4): 179-190. doi: 10.1139/t66-023
    [21]
    FRYDMAN S, ZEITLEN J G, ALPAN I. The yielding behavior of particulate media[J]. Canadian Geotechnical Journal, 1973, 10(3): 341-362. doi: 10.1139/t73-031
    [22]
    LADE P V, PRADEL D. Instability and plastic flow of soils: I experimental observations[J]. Journal of Engineering Mechanics, 1990, 116(11): 2532-2550. doi: 10.1061/(ASCE)0733-9399(1990)116:11(2532)
    [23]
    YAO Y P, HE G, LUO T. Study on determining the plastic flow direction of soils with dilatancy[J]. Acta Geotechnica, 2023, 18(5): 2411-2425. doi: 10.1007/s11440-022-01770-8
    [24]
    COLLINS I F, KELLY P A. A thermomechanical analysis of a family of soil models[J]. Géotechnique, 2002, 52(7): 507-518. doi: 10.1680/geot.2002.52.7.507
    [25]
    COLLINS I F. A systematic procedure for constructing critical state models in three dimensions[J]. International Journal of Solids and Structures, 2003, 40(17): 4379-4397. doi: 10.1016/S0020-7683(03)00226-9
    [26]
    ZIEGLER H, WEHRLI C. The derivation of constitutive relations from the free energy and the dissipation function[M]//Advances in Applied Mechanics. Amsterdam: Elsevier, 1987: 183-238.
    [27]
    TINMOUTH H G. A Study of Plasticity Theories and Their Applicability to Soils[D]. Cambridge, East of England, UK: University of Cambridge, 1981.
    [28]
    HOULSBY G. A derivation of the small-strain incremental theory of plasticity from thermodynamics[C]// Proceedings of the Proc IUTAM Conf Deformation and Failure of Granular Materials, Delft, 1982.
    [29]
    HOULSBY G T. Interpretation of dilation as a kinematic constraint[M]//Modern Approaches to Plasticity. Amsterdam: Elsevier, 1993: 19-38.
    [30]
    MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272. doi: 10.1680/geot.1997.47.2.255
    [31]
    CUBRINOVSKI M, ISHIHARA K. Modelling of sand behaviour based on state concept[J]. Soils and Foundations, 1998, 38(3): 115-127. doi: 10.3208/sandf.38.3_115
    [32]
    GAJO A, WOOD M. Severn-Trent sand: a kinematic-hardening constitutive model: the qp formulation[J]. Géotechnique, 1999, 49(5): 595-614. doi: 10.1680/geot.1999.49.5.595
    [33]
    LI J, YIN Z Y, CUI Y J, et al. Work input analysis for soils with double porosity and application to the hydromechanical modeling of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 2017, 54(2): 173-187. doi: 10.1139/cgj-2015-0574
    [34]
    YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035
    [35]
    YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 1-18.
    [36]
    COLLINS I F, HILDER T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(13): 1313-1347. doi: 10.1002/nag.247
    [37]
    YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199
    [38]
    YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123. doi: 10.1061/(ASCE)0733-9399(2007)133:10(1115)
    [39]
    YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685
    [40]
    张坤勇, 文德宝, 马奇豪. 椭圆抛物双屈服面弹塑性模型三维各向异性修正及其试验验证[J]. 岩石力学与工程学报, 2013, 32(8): 1692-1700. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308024.htm

    ZHANG Kunyong, WEN Debao, MA Qihao. Three-dimensional anisotropic revision and experimental verification of elliptic parabolic double yield surface elastoplastic model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1692-1700. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308024.htm
    [41]
    ZHOU A N. Modelling hydro-mechanical behavior for unsaturated soils[J]. Japanese Geotechnical Society Special Publication, 2017, 5(2): 79-94. doi: 10.3208/jgssp.v05.019
    [42]
    杨杰, 尹振宇, 黄宏伟, 等. 基于扰动状态概念硬化参量的结构性黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 554-561. doi: 10.11779/CJGE201703021

    YANG Jie, YIN Zhenyu, HUANG Hongwei, et al. Bounding surface plasticity model for structured clays using disturbed state concept-based hardening variables[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 554-561. (in Chinese) doi: 10.11779/CJGE201703021
    [43]
    HUANG J Q, ZHAO M, DU X L, et al. An elasto-plastic damage model for rocks based on a new nonlinear strength criterion[J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1413-1429. doi: 10.1007/s00603-018-1417-1
    [44]
    ZHANG S, YE G L, WANG J H. Elastoplastic model for overconsolidated clays with focus on volume change under general loading conditions[J]. International Journal of Geomechanics, 2018, 18(3): 1-14.
    [45]
    万征, 孟达. 基于t准则的各向异性强度准则及变换应力法[J]. 力学学报, 2020, 52(5): 1519-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005029.htm

    WAN Zheng, MENG Da. Anisotropic strength criterion based on t criterion and the transformation stress method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1519-1537. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005029.htm
    [46]
    FANG J J, FENG Y X. Elastoplastic model and three-dimensional method for unsaturated soils[J]. Shock and Vibration, 2020(3): 8592628.
    [47]
    WANG Z N, WANG G. A closest point projection method for stress integration of 3D sand models generalised by transformed stress method[J]. Geomechanics and Geoengineering, 2024, 19(1): 27-39. doi: 10.1080/17486025.2022.2153933
  • Related Articles

    [1]YAO Yangping, WU Xiaotian, CUI Wenjie. Influences of 3D model generalization approach on calculation of stress and strain of soils under plane strain[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 459-467. DOI: 10.11779/CJGE20211389
    [2]HU Zhi-hua, HU Yu-hao, MA Dong-tao, YUAN Lu, LI Mei. Experimental study on acoustic waves of different types of debris flow using generalized S transform[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1962-1968. DOI: 10.11779/CJGE202010023
    [3]WANG Tao, LIU Jin-li, WANG Xu. Homogenized additional stress coefficient of foundation piles based on generalized mode of pile shaft resistance[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 665-672. DOI: 10.11779/CJGE201804010
    [4]DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Control and realization of generalized stress paths in HCA test[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 106-110. DOI: 10.11779/CJGE2017S1021
    [5]GUO Ying, HAN Jie. Influence of sampling methods and stress paths on the consolidated undrained shear behavior of saturated fine sand with medium density[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 79-84. DOI: 10.11779/CJGE2016S2013
    [6]LIANG Jian-wen, HE Ying. A method of estimating general nonlinear dynamic characteristics of sites[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 436-444.
    [7]Generalization of anisotropic constitutive models using transformed[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [8]YAO Yangping, LU Dechun, ZHOU Annan. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29.
    [9]JIE Yuxin, JIE Guanzhou, LI Guangxin. Seepage analysis by boundary-fitted coordinate transformation method[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 52-56.
  • Cited by

    Periodical cited type(5)

    1. 覃浩军,王利杰,蒲国庆,叶坤,周雄雄,王刚. 基于反演参数的高心墙堆石坝蓄水变形研究. 大坝与安全. 2025(01): 47-54 .
    2. 张毅,陈敬江. 基于动力计算的震区水库土石坝稳定性及安全评价研究. 水利科技与经济. 2023(06): 6-10+15 .
    3. 张宏洋,韩鹏举,马聪,陶元浩,李桐,丁泽霖,韩立炜,张先起,张宪雷. 基于改进粒子群算法的土石坝动力参数反演研究. 水利水电技术(中英文). 2023(06): 110-123 .
    4. 张宏洋,李桐,杨益格,丁泽霖,张先起,汪顺生. 基于模态分解和云粒子网络的大坝基岩地震动输入研究. 水利学报. 2023(06): 749-761 .
    5. 王茂华,迟世春,周雄雄. 基于地震记录和SSI方法的高土石坝模态识别. 岩土工程学报. 2021(07): 1279-1287 . 本站查看

    Other cited types(11)

Catalog

    Article views (370) PDF downloads (68) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return