Citation: | ZHANG Jian, REN Guoping, YIN Yihao, ZHONG Xiaochun, ZHANG Chunlei, LIANG Yu. Influences and applications of H-type reagent on slurry separation treatment of large-diameter slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 153-163. DOI: 10.11779/CJGE20230312 |
[1] |
张华. 大直径盾构泥水分离处理技术研究与应用[J]. 隧道建设(中英文), 2020, 40(增刊2): 264-270.
ZHANG Hua. Research and application of slurry separation treatment technology for large diameter shield[J]. Tunnel Construction, 2020, 40(S2): 264-270. (in Chinese)
|
[2] |
魏纲, 齐永洁, 吴华君, 等. 盾构下穿既有地铁隧道环向围压及受力变化[J]. 中南大学学报(自然科学版), 2020, 51(12): 3515-3527.
WEI Gang, QI Yongjie, WU Huajun, et al. Changes in circumferential pressure and stresses in existing tunnels caused by tunnel crossing[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3515-3527. (in Chinese)
|
[3] |
历朋林. 粉质黏土地层泥水盾构泥浆脱水处理技术研究[J]. 铁道建筑技术, 2020(11): 123-127.
LI Penglin. Research on dewatering treatment technology of slurry shield in silty clay layer[J]. Railway Construction Technology, 2020(11): 123-127. (in Chinese)
|
[4] |
周翠红, 杨长顺, 曾萌, 等. 碟式离心机应用于泥水分离的试验研究[J]. 现代隧道技术, 2017, 54(2): 170-176.
ZHOU Cuihong, YANG Changshun, ZENG Meng, et al. Experimental study on slurry separation by disc centrifuge[J]. Modern Tunnelling Technology, 2017, 54(2): 170-176. (in Chinese)
|
[5] |
朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术" 的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054.
ZHU Wei, MIN Fanlu, LÜ Yiyan, et al. Subject of "mud science and application technology" and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese)
|
[6] |
孙金鑫, 钟小春, 付伟, 等. 不同阳离子对泥水盾构泥浆稳定性影响试验研究[J]. 岩土工程学报, 2020, 42(8): 1525-1531. doi: 10.11779/CJGE202008018
SUN Jinxin, ZHONG Xiaochun, FU Wei, et al. Experimental study on effects of different cations on stability of slurry within slurry shield[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1525-1531. (in Chinese) doi: 10.11779/CJGE202008018
|
[7] |
BHATIA S K, MAURER B W, KHACHAN M M, et al. Performance indices for unidirectional flow conditions considering woven geotextiles and sediment slurries[C]//Sound Geotechnical Research to Practice. San Diego: American Society of Civil Engineers, 2013.
|
[8] |
武亚军, 陆逸天, 牛坤, 等. 药剂真空预压法处理工程废浆试验[J]. 岩土工程学报, 2016, 38(8): 1365-1373. doi: 10.11779/CJGE201608002
WU Yajun, LU Yitian, NIU Kun, et al. Experimental study on solid-liquid separation of construction waste slurry by additive agent-combined vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1365-1373. (in Chinese) doi: 10.11779/CJGE201608002
|
[9] |
李春林, 吴言坤, 吕焕杰, 等. PAM类有机絮凝剂对高黏粒含量废弃泥浆脱水性能影响研究[J]. 隧道建设(中英文), 2022, 42(2): 260-267.
LI Chunlin, WU Yankun, LYU Huanjie, et al. Influence of polyacrylamide organic flocculant on dewatering performance of waste slurry with a high content of clay particles[J]. Tunnel Construction, 2022, 42(2): 260-267. (in Chinese)
|
[10] |
王东星, 唐弈锴, 伍林峰. 疏浚淤泥化学絮凝-真空预压深度脱水效果评价[J]. 岩土力学, 2020, 41(12): 3929-3938.
WANG Dongxing, TANG Yikai, WU Linfeng. Evaluation on deep dewatering performance of dredged sludge treated by chemical flocculation-vacuum preloading[J]. Rock and Soil Mechanics, 2020, 41(12): 3929-3938. (in Chinese)
|
[11] |
KHACHAN M M, BHATIA S K, BADER R A, et al. Cationic starch flocculants as an alternative to synthetic polymers in geotextile tube dewatering[J]. Geosynthetics International, 2014, 21(2): 119-136.
|
[12] |
MAURER B W, GUSTAFSON A C, BHATIA S K, et al. Geotextile dewatering of flocculated, fiber reinforced fly-ash slurry[J]. Fuel, 2012, 97: 411-417.
|
[13] |
郭利芳, 迟姚玲, 赵华章. 新型复合絮凝剂对疏浚底泥脱水和重金属固化的研究[J]. 北京大学学报(自然科学版), 2019, 55(2): 329-334.
GUO Lifang, CHI Yaoling, ZHAO Huazhang. Study on new composite flocculants in dewantering of dredged sediments and solidification of heavy metals[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2): 329-334. (in Chinese)
|
[14] |
梁高杰, 陈文汨, 范尚. 赤泥沉降用新型氧肟酸絮凝剂的合成与应用[J]. 中南大学学报(自然科学版), 2017, 48(2): 295-301.
LIANG Gaojie, CHEN Wenmi, FAN Shang. Preparation of new hydroxamic acid flocculant and application for red mud settlement[J]. Journal of Central South University (Science and Technology), 2017, 48(2): 295-301. (in Chinese)
|
[15] |
周洋, 蒲诃夫, 李展毅, 等. 水平排水板–真空预压联合处理高含水率疏浚淤泥模型试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3246-3251.
ZHOU Yang, PU Hefu, LI Zhanyi, et al. Experimental investigations on treatment of dredged slurry by vacuum-assisted prefabricated horizontal drains[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3246-3251. (in Chinese)
|
[16] |
浩婷, 王曦, 周颜, 等. 真空负载方式对疏浚淤泥脱水过程中脱水规律的影响[J]. 岩土力学, 2015, 36(11): 3187-3192.
HAO Ting, WANG Xi, ZHOU Yan, et al. Effect of vacuum loading method on dehydration of dredged sludge in its dewatering process[J]. Rock and Soil Mechanics, 2015, 36(11): 3187-3192. (in Chinese)
|
[17] |
鲍树峰, 董志良, 莫海鸿, 等. 高黏粒含量新吹填淤泥加固新技术室内研发[J]. 岩土力学, 2015, 36(1): 61-67.
BAO Shufeng, DONG Zhiliang, MO Haihong, et al. Laboratory tests on new reinforcement technology of newly hydraulic reclamation mud with high clay content[J]. Rock and Soil Mechanics, 2015, 36(1): 61-67. (in Chinese)
|
[18] |
污水综合排放标准: GB 8978—1996[S]. 北京: 中国标准出版社, 1998.
Integrated Wastewater Discharge Standard: GB 8978—1996[S]. Beijing: Standards Press of China, 1998. (in Chinese)
|
[19] |
夏新星, 陈文峰, 王龙涛. 复合调理剂对废弃建筑泥浆脱水性能的影响[J]. 环境工程学报, 2022, 16(4): 1313-1322.
XIA Xinxing, CHEN Wenfeng, WANG Longtao. Effect of composite conditioner on dewatering performance of high alkaline construction slurry[J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1313-1322. (in Chinese)
|
[20] |
王东星, 伍林峰, 唐弈锴, 等. 建筑废弃泥浆泥水分离过程与效果评价[J]. 浙江大学学报(工学版), 2020, 54(6): 1049-1057.
WANG Dongxing, WU Linfeng, TANG Yikai, et al. Mud-water separation process and performance evaluation of waste slurry from construction engineering[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1049-1057. (in Chinese)
|
[21] |
徐佩佩. 建筑泥浆高效综合脱水技术研究[D]. 南京: 东南大学, 2015.
XU Peipei. Study on High Efficiency E and Comprehensive Dehydration Technique of Construction Mud[D]. Nanjing: Southeast University, 2015. (in Chinese)
|
[22] |
LIU P F, WANG S Y, GE L, et al. Changes of Atterberg limits and electrochemical behaviors of clays with dispersants as conditioning agents for EPB shield tunnelling[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2018, 73: 244-251.
|