• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chunhua, HUANG Jiangdong, DENG Zhengding, XIE Haijian, DENG Tongfa. One-dimension model for transport of organic contaminants in double-artificial composite liner under thermal osmosis[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1254-1262. DOI: 10.11779/CJGE20230280
Citation: ZHANG Chunhua, HUANG Jiangdong, DENG Zhengding, XIE Haijian, DENG Tongfa. One-dimension model for transport of organic contaminants in double-artificial composite liner under thermal osmosis[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1254-1262. DOI: 10.11779/CJGE20230280

One-dimension model for transport of organic contaminants in double-artificial composite liner under thermal osmosis

More Information
  • Received Date: April 02, 2023
  • Available Online: June 04, 2024
  • A one-dimensional model for transport of organic contaminants in a double-artificial composite liner under thermal osmosis is proposed. The model is simulated by using the COMSOL Multiphysics. The results show that the bottom concentration only increases by 4.9% even when the leachate head increases to 10 m. It means that the effects of leachate head on transport of organic contaminants in the double-artificial composite liner are negligible. The bottom concentration of the double-artificial composite liner system will increase by 31.5% when the coefficient of thermal osmosis increases to 5×10-11 m2·K-1·s-1. The effects of thermal osmosis should be considered in the double-artificial composite liner design when the coefficient of thermal osmosis reaches 1×10-11 m2·K-1·s-1. The length of wrinkle and the frequency of holes on the secondary liner geomembrane have significant effects on contaminant transport in the double-artificial composite liner. The bottom concentration increases by 87% when the length of wrinkle increases from10 to 100 m. In the construction of the double-artificial composite liner, the construction quality of the secondary liner geomembrane should be strictly controlled to reduce the generation of wrinkles and holes, which can effectively improve the service performance of the liner system.
  • [1]
    薛强, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2020, 53(3): 80-94. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202003010.htm

    XUE Qiang, ZHAN Liangtong, HU Liming, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2020, 53(3): 80-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202003010.htm
    [2]
    周正兵, 王钊, 费香泽. 用于固体废弃物填埋场中的两种复合防渗系统的比较[J]. 环境工程, 2002, 20(3): 55-59, 5. doi: 10.3969/j.issn.1000-8942.2002.03.019

    ZHOU Zhengbing, WANG Zhao, FEI Xiangze. Comparision of two kinds of composite impervious systems used in solid waste landfills[J]. Environmental Engineering, 2002, 20(3): 55-59, 5. (in Chinese) doi: 10.3969/j.issn.1000-8942.2002.03.019
    [3]
    周炼, 安达, 杨延梅, 等. 危险废物填埋场复合衬层渗漏分析与污染物运移预测[J]. 环境科学学报, 2017, 37(6): 2210-2217. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706024.htm

    ZHOU Lian, AN Da, YANG Yanmei, et al. Predicting leakage and contaminant transport through composite liners in hazardous waste landfill[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2210-2217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706024.htm
    [4]
    谢海建, 陈云敏, 楼章华. 污染物通过有缺陷膜复合衬垫的一维运移解析解[J]. 中国科学: 技术科学, 2010, 40(5): 486-495. doi: 10.3969/j.issn.0253-2778.2010.05.0008

    XIE Haijian, CHEN Yunmin, LOU Zhanghua. Analytical solution of one-dimensional migration of pollutants through defective membrane composite liner[J]. Scientia Sinica (Technologica), 2010, 40(5): 486-495. (in Chinese) doi: 10.3969/j.issn.0253-2778.2010.05.0008
    [5]
    冯世进, 彭明清, 陈樟龙, 等. 复合衬垫中污染物一维瞬态扩散-对流运移规律研究[J]. 岩土工程学报, 2022, 44(5): 799-809. doi: 10.11779/CJGE202205002

    FENG Shijin, PENG Mingqing, CHEN Zhanglong, et al. One-dimensional transport of transient diffusion- advection of organic contaminant through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 799-809. (in Chinese) doi: 10.11779/CJGE202205002
    [6]
    张春华, 吴家葳, 陈赟, 等. 基于污染物击穿时间的填埋场复合衬垫厚度简化设计方法[J]. 岩土工程学报, 2020, 42(10): 1841-1848. doi: 10.11779/CJGE202010009

    ZHANG Chunhua, WU Jiawei, CHEN Yun, et al. Simplified method for determination of thickness of composite liners based on contaminant breakthrough time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841-1848. (in Chinese) doi: 10.11779/CJGE202010009
    [7]
    张春华, 黄江东, 李晓宙, 等. 热扩散作用下污染物在CCL中运移的一维解析模型及其应用[J]. 岩土工程学报, 2023, 45(3): 541-550. doi: 10.11779/CJGE20211427

    ZHANG Chunhua, HUANG Jiangdong, LI Xiaozhou, et al. One-dimensional analytical model for contaminant transport through CCL under thermal diffusion and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 541-550. (in Chinese) doi: 10.11779/CJGE20211427
    [8]
    李江山, 江文豪, 葛尚奇, 等. 非等温分布条件下压实黏土衬垫中固结与污染物运移耦合模型研究[J]. 岩土工程学报, 2022, 44(11): 2071-2080. doi: 10.11779/CJGE202211013

    LI Jiangshan, JIANG Wenhao, GE Shangqi, et al. Coupling model for consolidation and contaminant transport in compacted clay liners under non-isothermal condition[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2071-2080. (in Chinese) doi: 10.11779/CJGE202211013
    [9]
    CHEN Y F, ZHOU C B, JING L R. Modeling coupled THM processes of geological porous media with multiphase flow: theory and validation against laboratory and field scale experiments[J]. Computers and Geotechnics, 2009, 36(8): 1308-1329. doi: 10.1016/j.compgeo.2009.06.001
    [10]
    GHASSEMI A, TAO Q, DIEK A. Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale[J]. Journal of Petroleum Science and Engineering, 2009, 67(1/2): 57-64.
    [11]
    GONÇALVÈS J, DE MARSILY G, TREMOSA J. Importance of thermo-osmosis for fluid flow and transport in clay formations hosting a nuclear waste repository[J]. Earth and Planetary Science Letters, 2012, 339/340: 1-10. doi: 10.1016/j.epsl.2012.03.032
    [12]
    GONÇALVÈS J, TRÉMOSA J. Estimating thermo-osmotic coefficients in clay-rocks: I. Theoretical insights[J]. Journal of Colloid and Interface Science, 2010, 342(1): 166-174. doi: 10.1016/j.jcis.2009.09.056
    [13]
    THOMAS H R, VARDON P J, CLEALL P J. Three-dimensional behaviour of a prototype radioactive waste repository in fractured granitic rock[J]. Canadian Geotechnical Journal, 2014, 51(3): 246-259. doi: 10.1139/cgj-2013-0094
    [14]
    SOLER J M. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport[J]. Journal of Contaminant Hydrology, 2001, 53(1/2): 63-84.
    [15]
    ZAGORŠČAK R, SEDIGHI M, THOMAS H R. Effects of thermo-osmosis on hydraulic behavior of saturated clays[J]. International Journal of Geomechanics, 2017, 17(3): 04016068. doi: 10.1061/(ASCE)GM.1943-5622.0000742
    [16]
    张志红, 韩林, 田改垒. 饱和土体热-水-力-化全耦合一维溶质运移模型[J]. 东南大学学报(自然科学版), 2019, 49(6): 1178-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906022.htm

    ZHANG Zhihong, HAN Lin, TIAN Gailei. One-dimensional transport model for solute with thermo-hydro-mechanical-chemical soupling in saturated soil[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(6): 1178-1186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906022.htm
    [17]
    田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278-287. doi: 10.11779/CJGE202202009

    TIAN Gailei, ZHANG Zhihong. Coupled model for contaminant diffusion, osmosis and consolidation in soil considering thermal effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278-287. (in Chinese) doi: 10.11779/CJGE202202009
    [18]
    XIE H J, CHEN Y M, LOU Z H. An analytical solution to contaminant transport through composite liners with geomembrane defects[J]. Science China Technological Sciences, 2010, 53(5): 1424-1433. doi: 10.1007/s11431-010-0111-7
    [19]
    ROWE R K. Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste[C]//Proceedings of the Sixth International Conference on Geosynthetics. Atlanta, 1998.
    [20]
    KALBE U, MÜLLER W W, BERGER W, et al. Transport of organic contaminants within composite liner systems[J]. Applied Clay Science, 2002, 21(1/2): 67-76.
    [21]
    ROWE R K. Long-term performance of contaminant barrier systems[J]. Géotechnique, 2005, 55(9): 631-678. doi: 10.1680/geot.2005.55.9.631
    [22]
    XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research, 2015, 22(4): 2824-2836. doi: 10.1007/s11356-014-3565-5
    [23]
    XIE H J, CHEN Y M, KE H, et al. Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants[J]. Journal of Environmental Sciences, 2009, 21(4): 552-560. doi: 10.1016/S1001-0742(08)62307-4
    [24]
    XIE H, ZHANG C H, FENG S J, et al. Analytical model for degradable organic contaminant transport through a GMB/GCL/AL system[J]. Journal of Environmental Engineering, 2018, 144: 04018006. doi: 10.1061/(ASCE)EE.1943-7870.0001338
    [25]
    张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018.

    ZHANG Chunhua. Mechanisms for Contaminant Transport in Landfill Composite Liners under Thermal Effect and its Optimization Design Method[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [26]
    WU X, SHI J Y, HE J. Analytical solutions for diffusion of organic contaminant through GCL triple-layer composite liner considering degradation in liner[J]. Environmental Earth Sciences, 2016, 75(20): 1-18.
    [27]
    LIU C L, ZHANG F G, ZHANG Y, et al. Experimental and numerical study of pollution process in an aquifer in relation to a garbage dump field[J]. Environmental Geology, 2005, 48(8): 1107-1115. doi: 10.1007/s00254-005-0052-9
    [28]
    DU Y J, SHEN S L, LIU S Y, et al. Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems[J]. Geotextiles and Geomembranes, 2009, 27(3): 232-239. doi: 10.1016/j.geotexmem.2008.11.007
    [29]
    XIE H J, CHEN Y M, ZHAN L T, et al. Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system[J]. Journal of Zhejiang University-SCIENCE A, 2009, 10(3): 439-449. doi: 10.1631/jzus.A0820299
    [30]
    ZHAN T L T, CHEN Y M, LING W A. Shear strength characterization of municipal solid waste at the Suzhou landfill, China[J]. Engineering Geology, 2008, 97(3/4): 97-111.
    [31]
    CHAPPEL M J, BRACHMAN R W I, TAKE W A, et al. Large-scale quantification of wrinkles in a smooth black HDPE geomembrane[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 671-679. doi: 10.1061/(ASCE)GT.1943-5606.0000643
    [32]
    ROWE R K, CHAPPEL M J, BRACHMAN R W I, et al. Field study of wrinkles in a geomembrane at a composite liner test site[J]. Canadian Geotechnical Journal, 2012, 49(10): 1196-1211. doi: 10.1139/t2012-083
    [33]
    徐亚, 能昌信, 刘玉强, 等. 垃圾填埋场HDPE膜漏洞密度及其影响因素的统计分析[J]. 环境工程学报, 2015, 9(9): 4558-4564. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm

    XU Ya, NAI Changxin, LIU Yuqiang, et al. Statistical analysis on density of accidental-hole in landfill liner system[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4558-4564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm
  • Cited by

    Periodical cited type(12)

    1. 李贝贝. 强动压巷道底板变形破坏特征及控制技术研究. 山东煤炭科技. 2025(01): 1-4+11 .
    2. 毕智强,于振亚,张涛. 深井动压软岩巷道底鼓变形破坏机理与防治技术. 陕西煤炭. 2025(04): 84-88+113 .
    3. 伊丙鼎. 煤层水仓围岩变形破坏特征及控制技术研究. 煤炭工程. 2024(03): 117-123 .
    4. 肖同强,王泽源,刘发义,代晓亮,赵帅,余子豪. 深部强动压巷道底鼓控制机理及技术研究. 采矿与安全工程学报. 2024(04): 666-676 .
    5. 丁维波,王丹影,闫医慧. 回采巷道底鼓机理及防治技术研究. 煤炭技术. 2024(08): 23-27 .
    6. 朱国保,董垠枫. 非均质围岩隧道断面的施工关键技术研究. 四川建筑. 2024(05): 200-201 .
    7. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 .
    8. 柴敬,韩志成,雷武林,张丁丁,马晨阳,孙凯,翁明月,张有志,丁国利,郑忠友,张寅,韩刚. 回采巷道底鼓演化过程的分布式光纤实测研究. 煤炭科学技术. 2023(01): 146-156 .
    9. 吕情绪,曹军,高亮. 重复采动回采巷道变形机理及稳定控制. 中国矿业. 2023(05): 96-103 .
    10. 丁自伟,王少轩,王庆阳,王耀声,王春斌,李军岐,邸广强,李亮. 软岩巷道底鼓机理及其稳定性控制研究. 煤炭工程. 2023(07): 102-109 .
    11. 吕志强,黄亚军,景明,徐啸川. 深部软岩巷道变形破坏机理及支护技术. 能源与环保. 2023(11): 280-286 .
    12. 杨晓炜. 深部软岩大断面巷道大变形控制技术研究. 能源与环保. 2023(11): 312-318 .

    Other cited types(16)

Catalog

    Article views PDF downloads Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return