Citation: | ZHANG Jinxuan, LIU Hanlong, XIAO Yang. Development of droplet microfluidic system and regime of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1236-1245. DOI: 10.11779/CJGE20230255 |
[1] |
GUIDO A, SPOSATO M, PALLADINO G, et al. Biomineralization of primary carbonate cements: a new biosignature in the fossil record from the Anisian of Southern Italy[J]. Lethaia, 2022, 55(1): 1-21.
|
[2] |
COSMIDIS J, BENZERARA K. Why do microbes make minerals?[J]. Comptes Rendus Géoscience, 2022, 354(G1): 1-39. doi: 10.5802/crgeos.107
|
[3] |
JIMENEZ-MARTINEZ J, NGUYEN J, OR D. Controlling pore-scale processes to tame subsurface biomineralization[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(1): 27-52. doi: 10.1007/s11157-021-09603-y
|
[4] |
崔昊, 肖杨, 孙增春, 等. 微生物加固砂土弹塑性本构模型[J]. 岩土工程学报, 2022, 44(3): 474-482. doi: 10.11779/CJGE202203009
CUI Hao, XIAO Yang, SUN Zengchun, et al. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. (in Chinese) doi: 10.11779/CJGE202203009
|
[5] |
BINDSCHEDLER S, CAILLEAU G, VERRECCHIA E. Role of fungi in the biomineralization of calcite[J]. Minerals, 2016, 6(2): 41. doi: 10.3390/min6020041
|
[6] |
O'DONNELL S T, HALL C A, KAVAZANJIAN E Jr, et al. Biogeochemical model for soil improvement by denitrification[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 04019091. doi: 10.1061/(ASCE)GT.1943-5606.0002126
|
[7] |
SCHÄDLER S, BURKHARDT C, HEGLER F, et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria[J]. Geomicrobiology Journal, 2009, 26(2): 93-103. doi: 10.1080/01490450802660573
|
[8] |
ANBU P, KANG C H, SHIN Y J, et al. Formations of calcium carbonate minerals by bacteria and its multiple applications[J]. SpringerPlus, 2016, 5: 250. doi: 10.1186/s40064-016-1869-2
|
[9] |
SIDDIQUE R, CHAHAL N K. Effect of ureolytic bacteria on concrete properties[J]. Construction and Building Materials, 2011, 25(10): 3791-3801. doi: 10.1016/j.conbuildmat.2011.04.010
|
[10] |
NAWARATHNA T H K, NAKASHIMA K, KAWABE T, et al. Artificial fusion protein to facilitate calcium carbonate mineralization on insoluble polysaccharide for efficient biocementation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11493-11502.
|
[11] |
XIAO Y, WANG Y, DESAI C S, et al. Strength and deformation responses of biocemented sands using a temperature-controlled method[J]. International Journal of Geomechanics, 2019, 19(11): 04019120. doi: 10.1061/(ASCE)GM.1943-5622.0001497
|
[12] |
XIAO Y, HE X A, ZAMAN M, et al. Review of strength improvements of biocemented soils[J]. International Journal of Geomechanics, 2022, 22(11): 03122001. doi: 10.1061/(ASCE)GM.1943-5622.0002565
|
[13] |
刘汉龙, 赵常, 肖杨. 微生物矿化反应原理、沉积与破坏机制及理论: 研究进展与挑战[J/OL]. 岩土工程学报, 1-12[2024-05-08]. http://kns.cnki.net/kcms/detail/32.1124.tu.20230601.2133.011.html.
LIU Hanlong, ZHAO Chang, XIAO Yang. Reaction principle, deposition and failure mechanisms and theory of biomineralization: progress and challenges[J/OL]. Chinese Journal of Geotechnical Engineering, 1-12[2024-05-08]. http://kns.cnki.net/kcms/detail/32.1124.tu.20230601.2133.011.html. (in Chinese)
|
[14] |
BENZERARA K, MIOT J, MORIN G, et al. Significance, mechanisms and environmental implications of microbial biomineralization[J]. Comptes Rendus Geoscience, 2011, 343(2/3): 160-167.
|
[15] |
ZHANG W C, JU Y, ZONG Y W, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science & Technology, 2018, 52(16): 9266-9276.
|
[16] |
GAO X, HAN Y, XIA Q Y, et al. Combined effects of microorganisms and inorganic templates on the nucleation and precipitation of magnesium-calcium minerals: experimental evidences and theoretical calculations[J]. Applied Surface Science, 2022, 598: 153813. doi: 10.1016/j.apsusc.2022.153813
|
[17] |
DECLET A, REYES E, SUAREZ O M. Calcium carbonate precipitation: a review of the carbonate crystallization process and applications in bioinspired composites[J]. Reviews on Advanced Materials Science, 2016, 44(1): 87-107.
|
[18] |
YAN H X, OWUSU D C, HAN Z Z, et al. Extracellular, surface, and intracellular biomineralization of bacillus subtilis daniel-1 bacteria[J]. Geomicrobiology Journal, 2021, 38(8): 698-708. doi: 10.1080/01490451.2021.1937406
|
[19] |
WANG J M, YAO S N. The study on calcium carbonate mimetic biomineralization in the chitosan/phospholipid/ cholesterol system[J]. Chinese Journal of Inorganic Chemistry, 2001, 17(2): 202-208.
|
[20] |
AZULAY D N, CHAI L. Calcium carbonate formation in the presence of biopolymeric additives[J]. Journal of Visualized Experiments, 2019(147): e59638.
|
[21] |
RUI Y F, QIAN C X. The regulation mechanism of bacteria on the properties of biominerals[J]. Journal of Crystal Growth, 2021, 570: 126214. doi: 10.1016/j.jcrysgro.2021.126214
|
[22] |
BRAISSANT O, CAILLEAU G, DUPRAZ C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids[J]. Journal of Sedimentary Research, 2003, 73(3): 485-490. doi: 10.1306/111302730485
|
[23] |
KUMARI N T H. Enhancement of microbially induced carbonate precipitation using organic biopolymer[J]. International Journal of GEOMATE, 2018, 14(41): 7-12.
|
[24] |
赵常, 何想, 胡冉, 等. 微生物矿化动力学理论与模拟[J]. 岩土工程学报, 2022, 44(6): 1096-1105. doi: 10.11779/CJGE202206014
ZHAO Chang, HE Xiang, HU Ran, et al. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1096-1105. (in Chinese) doi: 10.11779/CJGE202206014
|
[25] |
XIAO Y, XIAO W T, WU H R, et al. Fracture of interparticle MICP bonds under compression[J]. International Journal of Geomechanics, 2023, 23(3): 04022316. doi: 10.1061/IJGNAI.GMENG-8282
|
[26] |
CAI G Z, XUE L, ZHANG H L, et al. A review on micromixers[J]. Micromachines, 2017, 8(9): 274. doi: 10.3390/mi8090274
|
[27] |
WEINHARDT F, DENG J X, HOMMEL J, et al. Spatiotemporal distribution of precipitates and mineral phase transition during biomineralization affect porosity-permeability relationships[J]. Transport in Porous Media, 2022, 143(2): 527-549. doi: 10.1007/s11242-022-01782-8
|
[28] |
XIAO Y, CAO B F, SHI J Q, et al. State-of-the-art review on the application of microfluidics in biogeotechnology[J]. Transportation Geotechnics, 2023, 41: 101030. doi: 10.1016/j.trgeo.2023.101030
|
[29] |
何想. 基于微流控技术的微生物矿化胶结时空演化规律研究[D]. 重庆: 重庆大学, 2021.
HE Xiang. Spatiotemporal Evolution of Biomineralized Cementation Based on Microfluidics[D]. Chongqing: Chongqing University, 2021. (in Chinese)
|
[30] |
何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. doi: 10.11779/CJGE202006003
HE Xiang, MA Guoliang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. (in Chinese) doi: 10.11779/CJGE202006003
|
[31] |
WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.
|
[32] |
LIN H, SULEIMAN M T, BROWN D G, et al. Mechanical behavior of sands treated by microbially induced carbonate precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 04015066. doi: 10.1061/(ASCE)GT.1943-5606.0001383
|
[33] |
FUJITA M, NAKASHIMA K, ACHAL V, et al. Whole-cell evaluation of urease activity of Pararhodobacter sp. isolated from peripheral beachrock[J]. Biochemical Engineering Journal, 2017, 124: 1-5. doi: 10.1016/j.bej.2017.04.004
|
[34] |
YI H H, ZHENG T W, JIA Z R, et al. Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria[J]. Journal of Crystal Growth, 2021, 564: 126113. doi: 10.1016/j.jcrysgro.2021.126113
|
[35] |
CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9
|
[36] |
PHILLIPS A J, GERLACH R, LAUCHNOR E, et al. Engineered applications of ureolytic biomineralization: a review[J]. Biofouling, 2013, 29(6): 715-733. doi: 10.1080/08927014.2013.796550
|
[37] |
XIAO Y, HE X, WU W, et al. Kinetic biomineralization through microfluidic chip tests[J]. Acta Geotechnica, 2021, 16(10): 3229-3237. doi: 10.1007/s11440-021-01205-w
|
[38] |
何想, 刘汉龙, 韩飞, 等. 微生物矿化沉积时空演化的微流控芯片试验研究[J]. 岩土工程学报, 2021, 43(10): 1861-1869. doi: 10.11779/CJGE202110012
HE Xiang, LIU Hanlong, HAN Fei, et al. Spatiotemporal evolution of microbial-induced calcium carbonate precipitation based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1861-1869. (in Chinese) doi: 10.11779/CJGE202110012
|
[39] |
WANG Y, SOGA K, DE J J, et al. Microscale visualization of microbial-induced carbonate precipitation (MICP) processes by different treatment procedures[C]// IS-Atlanta 2018 Geo-Mechanics from Micro to Macro-ISSMGE TC 105, Atlanta, 2018.
|
[40] |
EL MOUNTASSIR G, LUNN R J, MOIR H, et al. Hydrodynamic coupling in microbially mediated fracture mineralization: formation of self-organized groundwater flow channels[J]. Water Resources Research, 2014, 50(1): 1-16. doi: 10.1002/2013WR013578
|
[41] |
XIAO Y, HE X A, STUEDLEIN A W, et al. Crystal growth of MICP through microfluidic chip tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(5): 06022002. doi: 10.1061/(ASCE)GT.1943-5606.0002756
|
[42] |
LI A, CHANG J, SHUI T, et al. Probing interaction forces associated with calcite scaling in aqueous solutions by atomic force microscopy[J]. Journal of Colloid and Interface Science, 2023, 633: 764-774. doi: 10.1016/j.jcis.2022.11.114
|
[43] |
CUTHBERT M O, RILEY M S, HANDLEY-SIDHU S, et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation[J]. Ecological Engineering, 2012, 41: 32-40. doi: 10.1016/j.ecoleng.2012.01.008
|
1. |
魏永杰,陈伟利. 纤维增强水泥土搅拌桩芯样的强度特征与本构模型. 水电能源科学. 2024(04): 103-106 .
![]() | |
2. |
朱彬,裴华富,杨庆,卢萌盟,王涛. 基于随机有限元法的波致海床响应概率分析. 岩土力学. 2023(05): 1545-1556 .
![]() | |
3. |
周文辉,肖宁,占辉,贺佐跃. 广州南沙某桥头路基处理方案对比及其工后沉降分析. 科技和产业. 2022(03): 370-376 .
![]() | |
4. |
陈利宏,杜军,唐灵敏,熊勃,姚嘉敏. 不同养护龄期下水泥掺入比对水泥土直剪特性的影响. 广东土木与建筑. 2022(05): 35-39 .
![]() | |
5. |
于晓夫. 公路施工质量控制与软土地基处理技术. 工程技术研究. 2022(10): 158-160 .
![]() | |
6. |
王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 .
![]() | |
7. |
黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 .
![]() | |
8. |
马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 .
![]() | |
9. |
郑永胜,田盎然,尹鹏,范韬,刘浩宇,居俊,唐强. 复杂环境下超宽深大基坑设计与施工技术分析——以X352县道改扩建工程项目为例. 盐城工学院学报(自然科学版). 2021(01): 60-65 .
![]() | |
10. |
周禹暄,胡俊,林小淇,李珂,王志鑫. X型与圆形冻结管单管冻结温度场数值对比分析. 海南大学学报(自然科学版). 2021(02): 198-203 .
![]() | |
11. |
张新建,唐昌意,刘智. 淤泥水泥土室内配合比试验及成桩效果分析. 公路. 2021(06): 81-84 .
![]() | |
12. |
秦堃. 深厚软土地基联合加固技术模型试验研究. 粉煤灰综合利用. 2021(04): 35-39 .
![]() | |
13. |
张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 .
![]() | |
14. |
刘海桃,徐志豪,邵朝阳. 有机质对水泥改良红黏土的力学特性影响及微观机理分析. 土工基础. 2021(05): 645-648 .
![]() | |
15. |
周文辉,肖宁,贺佐跃. 广州南沙某路基桩帽下脱空机理分析. 河南科学. 2021(11): 1783-1789 .
![]() | |
16. |
马子鹏. 临江富水环境大型过江通道基坑降水施工关键技术研究. 居舍. 2020(29): 63-66+72 .
![]() | |
17. |
吴雨薇,胡俊,王志鑫,曾东灵,汪树成. 水下清淤人工冻结板温度场数值分析. 煤田地质与勘探. 2019(02): 168-176 .
![]() | |
18. |
黄磊,刘文博,吴雨薇,陈璐,胡俊. 南宁地铁东滨区间联络通道冻结法加固施工监测分析研究. 森林工程. 2019(06): 77-85 .
![]() | |
19. |
吴雨薇,刘文博,胡俊,王志鑫,曾东灵. 基于温度场分析的新型水下清淤装置数值研究. 水利水电技术. 2019(11): 103-109 .
![]() | |
20. |
胡俊,张皖湘,汪磊,刘文博,王志鑫. 防护网与液氮冻土墙复合基坑支护技术研究. 海南大学学报(自然科学版). 2019(04): 359-367 .
![]() | |
21. |
郑俊杰,乔雅晴,章荣军. 被动加固区参数变异性对软土深基坑变形行为的影响. 土木与环境工程学报(中英文). 2019(06): 1-8 .
![]() |