• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Jinxuan, LIU Hanlong, XIAO Yang. Development of droplet microfluidic system and regime of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1236-1245. DOI: 10.11779/CJGE20230255
Citation: ZHANG Jinxuan, LIU Hanlong, XIAO Yang. Development of droplet microfluidic system and regime of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1236-1245. DOI: 10.11779/CJGE20230255

Development of droplet microfluidic system and regime of biomineralization

More Information
  • Received Date: March 23, 2023
  • Available Online: June 05, 2023
  • The microbially induced calcium carbonate precipitation (MICP) is a novel technique for soil reinforcement based on biomineralization. The MICP regime has not been fully explored due to the complexity of biomineralization process with so many factors affecting nucleation and growth of minerals. Recently, biomineralization evolution can be visually observed at microscale by using the microfluidic system, whereas the magnification for observation of crystal growth is still limited. In this study, a droplet microfluidic chip is designed to generate oblate droplet cells with 450μm in diameter by adjusting the flow velocities of two immiscible liquids, which can be used for MICP microreactor, i.e., the droplet microfluidic system for biomineralization with high precision. With the help of the system, it is found that the distribution of bacteria around CaCO3 crystals is almost unchanged with the CaCO3 crystals growing proportionally, and the crystal morphology remains the same. Some bacterial cells nearby the crystal are adsorbed on the crystal surface during the crystal growth with no obvious bacterial aggregation around the crystal. In addition, with the help of SEM, some caves on the crystal surface are found to be the sites that bacterial cells are adsorbed. Consequently, the droplet microfluidic system can provide a precise microreactor for biomineralization and an effective method for exploring nucleation regimes in MICP.
  • [1]
    GUIDO A, SPOSATO M, PALLADINO G, et al. Biomineralization of primary carbonate cements: a new biosignature in the fossil record from the Anisian of Southern Italy[J]. Lethaia, 2022, 55(1): 1-21.
    [2]
    COSMIDIS J, BENZERARA K. Why do microbes make minerals?[J]. Comptes Rendus Géoscience, 2022, 354(G1): 1-39. doi: 10.5802/crgeos.107
    [3]
    JIMENEZ-MARTINEZ J, NGUYEN J, OR D. Controlling pore-scale processes to tame subsurface biomineralization[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(1): 27-52. doi: 10.1007/s11157-021-09603-y
    [4]
    崔昊, 肖杨, 孙增春, 等. 微生物加固砂土弹塑性本构模型[J]. 岩土工程学报, 2022, 44(3): 474-482. doi: 10.11779/CJGE202203009

    CUI Hao, XIAO Yang, SUN Zengchun, et al. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. (in Chinese) doi: 10.11779/CJGE202203009
    [5]
    BINDSCHEDLER S, CAILLEAU G, VERRECCHIA E. Role of fungi in the biomineralization of calcite[J]. Minerals, 2016, 6(2): 41. doi: 10.3390/min6020041
    [6]
    O'DONNELL S T, HALL C A, KAVAZANJIAN E Jr, et al. Biogeochemical model for soil improvement by denitrification[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 04019091. doi: 10.1061/(ASCE)GT.1943-5606.0002126
    [7]
    SCHÄDLER S, BURKHARDT C, HEGLER F, et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria[J]. Geomicrobiology Journal, 2009, 26(2): 93-103. doi: 10.1080/01490450802660573
    [8]
    ANBU P, KANG C H, SHIN Y J, et al. Formations of calcium carbonate minerals by bacteria and its multiple applications[J]. SpringerPlus, 2016, 5: 250. doi: 10.1186/s40064-016-1869-2
    [9]
    SIDDIQUE R, CHAHAL N K. Effect of ureolytic bacteria on concrete properties[J]. Construction and Building Materials, 2011, 25(10): 3791-3801. doi: 10.1016/j.conbuildmat.2011.04.010
    [10]
    NAWARATHNA T H K, NAKASHIMA K, KAWABE T, et al. Artificial fusion protein to facilitate calcium carbonate mineralization on insoluble polysaccharide for efficient biocementation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11493-11502.
    [11]
    XIAO Y, WANG Y, DESAI C S, et al. Strength and deformation responses of biocemented sands using a temperature-controlled method[J]. International Journal of Geomechanics, 2019, 19(11): 04019120. doi: 10.1061/(ASCE)GM.1943-5622.0001497
    [12]
    XIAO Y, HE X A, ZAMAN M, et al. Review of strength improvements of biocemented soils[J]. International Journal of Geomechanics, 2022, 22(11): 03122001. doi: 10.1061/(ASCE)GM.1943-5622.0002565
    [13]
    刘汉龙, 赵常, 肖杨. 微生物矿化反应原理、沉积与破坏机制及理论: 研究进展与挑战[J/OL]. 岩土工程学报, 1-12[2024-05-08]. http://kns.cnki.net/kcms/detail/32.1124.tu.20230601.2133.011.html.

    LIU Hanlong, ZHAO Chang, XIAO Yang. Reaction principle, deposition and failure mechanisms and theory of biomineralization: progress and challenges[J/OL]. Chinese Journal of Geotechnical Engineering, 1-12[2024-05-08]. http://kns.cnki.net/kcms/detail/32.1124.tu.20230601.2133.011.html. (in Chinese)
    [14]
    BENZERARA K, MIOT J, MORIN G, et al. Significance, mechanisms and environmental implications of microbial biomineralization[J]. Comptes Rendus Geoscience, 2011, 343(2/3): 160-167.
    [15]
    ZHANG W C, JU Y, ZONG Y W, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science & Technology, 2018, 52(16): 9266-9276.
    [16]
    GAO X, HAN Y, XIA Q Y, et al. Combined effects of microorganisms and inorganic templates on the nucleation and precipitation of magnesium-calcium minerals: experimental evidences and theoretical calculations[J]. Applied Surface Science, 2022, 598: 153813. doi: 10.1016/j.apsusc.2022.153813
    [17]
    DECLET A, REYES E, SUAREZ O M. Calcium carbonate precipitation: a review of the carbonate crystallization process and applications in bioinspired composites[J]. Reviews on Advanced Materials Science, 2016, 44(1): 87-107.
    [18]
    YAN H X, OWUSU D C, HAN Z Z, et al. Extracellular, surface, and intracellular biomineralization of bacillus subtilis daniel-1 bacteria[J]. Geomicrobiology Journal, 2021, 38(8): 698-708. doi: 10.1080/01490451.2021.1937406
    [19]
    WANG J M, YAO S N. The study on calcium carbonate mimetic biomineralization in the chitosan/phospholipid/ cholesterol system[J]. Chinese Journal of Inorganic Chemistry, 2001, 17(2): 202-208.
    [20]
    AZULAY D N, CHAI L. Calcium carbonate formation in the presence of biopolymeric additives[J]. Journal of Visualized Experiments, 2019(147): e59638.
    [21]
    RUI Y F, QIAN C X. The regulation mechanism of bacteria on the properties of biominerals[J]. Journal of Crystal Growth, 2021, 570: 126214. doi: 10.1016/j.jcrysgro.2021.126214
    [22]
    BRAISSANT O, CAILLEAU G, DUPRAZ C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids[J]. Journal of Sedimentary Research, 2003, 73(3): 485-490. doi: 10.1306/111302730485
    [23]
    KUMARI N T H. Enhancement of microbially induced carbonate precipitation using organic biopolymer[J]. International Journal of GEOMATE, 2018, 14(41): 7-12.
    [24]
    赵常, 何想, 胡冉, 等. 微生物矿化动力学理论与模拟[J]. 岩土工程学报, 2022, 44(6): 1096-1105. doi: 10.11779/CJGE202206014

    ZHAO Chang, HE Xiang, HU Ran, et al. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1096-1105. (in Chinese) doi: 10.11779/CJGE202206014
    [25]
    XIAO Y, XIAO W T, WU H R, et al. Fracture of interparticle MICP bonds under compression[J]. International Journal of Geomechanics, 2023, 23(3): 04022316. doi: 10.1061/IJGNAI.GMENG-8282
    [26]
    CAI G Z, XUE L, ZHANG H L, et al. A review on micromixers[J]. Micromachines, 2017, 8(9): 274. doi: 10.3390/mi8090274
    [27]
    WEINHARDT F, DENG J X, HOMMEL J, et al. Spatiotemporal distribution of precipitates and mineral phase transition during biomineralization affect porosity-permeability relationships[J]. Transport in Porous Media, 2022, 143(2): 527-549. doi: 10.1007/s11242-022-01782-8
    [28]
    XIAO Y, CAO B F, SHI J Q, et al. State-of-the-art review on the application of microfluidics in biogeotechnology[J]. Transportation Geotechnics, 2023, 41: 101030. doi: 10.1016/j.trgeo.2023.101030
    [29]
    何想. 基于微流控技术的微生物矿化胶结时空演化规律研究[D]. 重庆: 重庆大学, 2021.

    HE Xiang. Spatiotemporal Evolution of Biomineralized Cementation Based on Microfluidics[D]. Chongqing: Chongqing University, 2021. (in Chinese)
    [30]
    何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. doi: 10.11779/CJGE202006003

    HE Xiang, MA Guoliang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. (in Chinese) doi: 10.11779/CJGE202006003
    [31]
    WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.
    [32]
    LIN H, SULEIMAN M T, BROWN D G, et al. Mechanical behavior of sands treated by microbially induced carbonate precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 04015066. doi: 10.1061/(ASCE)GT.1943-5606.0001383
    [33]
    FUJITA M, NAKASHIMA K, ACHAL V, et al. Whole-cell evaluation of urease activity of Pararhodobacter sp. isolated from peripheral beachrock[J]. Biochemical Engineering Journal, 2017, 124: 1-5. doi: 10.1016/j.bej.2017.04.004
    [34]
    YI H H, ZHENG T W, JIA Z R, et al. Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria[J]. Journal of Crystal Growth, 2021, 564: 126113. doi: 10.1016/j.jcrysgro.2021.126113
    [35]
    CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9
    [36]
    PHILLIPS A J, GERLACH R, LAUCHNOR E, et al. Engineered applications of ureolytic biomineralization: a review[J]. Biofouling, 2013, 29(6): 715-733. doi: 10.1080/08927014.2013.796550
    [37]
    XIAO Y, HE X, WU W, et al. Kinetic biomineralization through microfluidic chip tests[J]. Acta Geotechnica, 2021, 16(10): 3229-3237. doi: 10.1007/s11440-021-01205-w
    [38]
    何想, 刘汉龙, 韩飞, 等. 微生物矿化沉积时空演化的微流控芯片试验研究[J]. 岩土工程学报, 2021, 43(10): 1861-1869. doi: 10.11779/CJGE202110012

    HE Xiang, LIU Hanlong, HAN Fei, et al. Spatiotemporal evolution of microbial-induced calcium carbonate precipitation based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1861-1869. (in Chinese) doi: 10.11779/CJGE202110012
    [39]
    WANG Y, SOGA K, DE J J, et al. Microscale visualization of microbial-induced carbonate precipitation (MICP) processes by different treatment procedures[C]// IS-Atlanta 2018 Geo-Mechanics from Micro to Macro-ISSMGE TC 105, Atlanta, 2018.
    [40]
    EL MOUNTASSIR G, LUNN R J, MOIR H, et al. Hydrodynamic coupling in microbially mediated fracture mineralization: formation of self-organized groundwater flow channels[J]. Water Resources Research, 2014, 50(1): 1-16. doi: 10.1002/2013WR013578
    [41]
    XIAO Y, HE X A, STUEDLEIN A W, et al. Crystal growth of MICP through microfluidic chip tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(5): 06022002. doi: 10.1061/(ASCE)GT.1943-5606.0002756
    [42]
    LI A, CHANG J, SHUI T, et al. Probing interaction forces associated with calcite scaling in aqueous solutions by atomic force microscopy[J]. Journal of Colloid and Interface Science, 2023, 633: 764-774. doi: 10.1016/j.jcis.2022.11.114
    [43]
    CUTHBERT M O, RILEY M S, HANDLEY-SIDHU S, et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation[J]. Ecological Engineering, 2012, 41: 32-40. doi: 10.1016/j.ecoleng.2012.01.008
  • Cited by

    Periodical cited type(21)

    1. 魏永杰,陈伟利. 纤维增强水泥土搅拌桩芯样的强度特征与本构模型. 水电能源科学. 2024(04): 103-106 .
    2. 朱彬,裴华富,杨庆,卢萌盟,王涛. 基于随机有限元法的波致海床响应概率分析. 岩土力学. 2023(05): 1545-1556 .
    3. 周文辉,肖宁,占辉,贺佐跃. 广州南沙某桥头路基处理方案对比及其工后沉降分析. 科技和产业. 2022(03): 370-376 .
    4. 陈利宏,杜军,唐灵敏,熊勃,姚嘉敏. 不同养护龄期下水泥掺入比对水泥土直剪特性的影响. 广东土木与建筑. 2022(05): 35-39 .
    5. 于晓夫. 公路施工质量控制与软土地基处理技术. 工程技术研究. 2022(10): 158-160 .
    6. 王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 .
    7. 黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 .
    8. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看
    9. 郑永胜,田盎然,尹鹏,范韬,刘浩宇,居俊,唐强. 复杂环境下超宽深大基坑设计与施工技术分析——以X352县道改扩建工程项目为例. 盐城工学院学报(自然科学版). 2021(01): 60-65 .
    10. 周禹暄,胡俊,林小淇,李珂,王志鑫. X型与圆形冻结管单管冻结温度场数值对比分析. 海南大学学报(自然科学版). 2021(02): 198-203 .
    11. 张新建,唐昌意,刘智. 淤泥水泥土室内配合比试验及成桩效果分析. 公路. 2021(06): 81-84 .
    12. 秦堃. 深厚软土地基联合加固技术模型试验研究. 粉煤灰综合利用. 2021(04): 35-39 .
    13. 张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 .
    14. 刘海桃,徐志豪,邵朝阳. 有机质对水泥改良红黏土的力学特性影响及微观机理分析. 土工基础. 2021(05): 645-648 .
    15. 周文辉,肖宁,贺佐跃. 广州南沙某路基桩帽下脱空机理分析. 河南科学. 2021(11): 1783-1789 .
    16. 马子鹏. 临江富水环境大型过江通道基坑降水施工关键技术研究. 居舍. 2020(29): 63-66+72 .
    17. 吴雨薇,胡俊,王志鑫,曾东灵,汪树成. 水下清淤人工冻结板温度场数值分析. 煤田地质与勘探. 2019(02): 168-176 .
    18. 黄磊,刘文博,吴雨薇,陈璐,胡俊. 南宁地铁东滨区间联络通道冻结法加固施工监测分析研究. 森林工程. 2019(06): 77-85 .
    19. 吴雨薇,刘文博,胡俊,王志鑫,曾东灵. 基于温度场分析的新型水下清淤装置数值研究. 水利水电技术. 2019(11): 103-109 .
    20. 胡俊,张皖湘,汪磊,刘文博,王志鑫. 防护网与液氮冻土墙复合基坑支护技术研究. 海南大学学报(自然科学版). 2019(04): 359-367 .
    21. 郑俊杰,乔雅晴,章荣军. 被动加固区参数变异性对软土深基坑变形行为的影响. 土木与环境工程学报(中英文). 2019(06): 1-8 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return