• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Deluan, WANG Jie, WANG Yuxin, CHEN Zhicheng, LIANG Shihua. Experimental study on strength and water stability of concentrated solution sludge solidified with alkali-activated GGBS geopolymer[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1860-1869. DOI: 10.11779/CJGE20230215
Citation: FENG Deluan, WANG Jie, WANG Yuxin, CHEN Zhicheng, LIANG Shihua. Experimental study on strength and water stability of concentrated solution sludge solidified with alkali-activated GGBS geopolymer[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1860-1869. DOI: 10.11779/CJGE20230215

Experimental study on strength and water stability of concentrated solution sludge solidified with alkali-activated GGBS geopolymer

More Information
  • Received Date: March 12, 2023
  • Available Online: March 24, 2024
  • The concentrated solution sludge (CSS) produced by submerged combustion process on leachate has the characteristic of high soluble salt content. The sulfoaluminate cement (SAC) and alkali-activated GGBS geopolymer are used to solidify the CSS, respectively. A series of unconfined compressive strength (UCS) tests, water stability tests and microscopic observation tests are carried out on the solidified samples to investigate the curing effects and curing mechanisms of the SAC and alkali-activated GGBS geopolymer on the CSS. The results show that the UCS of the solidified sample with the SAC of 40% is 1.95 MPa at 28 d-curing age, and decreases to zero after 28 d-water immersion. The UCS of the solidified sample with the GGBS of 30% is 14.8 MPa at 28 d-curing age, and remains 3.6 MPa after 28 d-water immersion, which is much higher than the strength requirement of landfills. The three-dimensional geopolymeric gels and ettringite crystals produced by the GGBS geopolymerization are capable of effectively encapsulating and cementing the CSS particles, which is the curing mechanism of the alkali-activated GGBS-solidified CSS.
  • [1]
    REN Y B, ZHANG Z Y, HUANG M. A review on settlement models of municipal solid waste landfills[J]. Waste Management, 2022, 149: 79-95. doi: 10.1016/j.wasman.2022.06.019
    [2]
    生活垃圾填埋场渗滤液处理工程技术规范: HJ 564—2010[S]. 北京: 中国环境出版社, 2010.

    Leachate Treatment Project Technical Specification of Municipal Solid Waste Landfill: HJ 564—2010[S]. Beijing: China Environmental Science Press, 2010. (in Chinese)
    [3]
    生活垃圾卫生填埋处理技术规范: GB 50869—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Technical Code for Municipal Solid Waste Sanitary Landfill: GB 50869—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [4]
    生活垃圾填埋场污染控制标准: GB 16889—2008[S]. 北京: 中国环境科学出版社, 2008.

    Standard for Pollution Control on the Landfill Site of Municipal Solid Waste: GB 16889—2008[S]. Beijing: China Environmental Science Press, 2008. (in Chinese)
    [5]
    LUO Z T, ZHI T Y, LIU L, et al. Solidification/stabilization of chromium slag in red mud-based geopolymer[J]. Construction and Building Materials, 2022, 316: 125813. doi: 10.1016/j.conbuildmat.2021.125813
    [6]
    梁仕华, 冯德銮. 硫铝酸盐水泥协同垃圾焚烧副产物固化浓缩液污泥的强度和水稳定性试验研究[J]. 岩土力学, 2022, 43(6): 1453-1468. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206004.htm

    LIANG Shihua, FENG Deluan. Experimental study on strength and water stability of concentrated solution sludge solidified with sulfoaluminate cement collaborating waste incineration by-products[J]. Rock and Soil Mechanics, 2022, 43(6): 1453-1468. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206004.htm
    [7]
    蔡光华, 周伊帆, 潘智生, 等. 生石灰激发GGBS固化高含水率香港海相沉积物的物理力学性质研究[J]. 岩土力学, 2022, 43(2): 327-336. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202004.htm

    CAI Guanghua, ZHOU Yifan, PAN Zhisheng, et al. Physical and mechanical performance of quicklime-activated GGBS stabilized Hong Kong marine sediment at high water content[J]. Rock and Soil Mechanics, 2022, 43(2): 327-336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202004.htm
    [8]
    ALAM S, DAS S K, RAO B H. Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material[J]. Construction and Building Materials, 2019, 211: 932-942. doi: 10.1016/j.conbuildmat.2019.03.261
    [9]
    李鑫, 杜惠惠, 倪文, 等. KR脱硫渣碱激发矿渣的配比优化及水化特性[J]. 硅酸盐通报, 2023, 42(1): 170-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202301017.htm

    LI Xin, DU Huihui, NI Wen, et al. Ratio optimization and hydration characteristics of KR desulfurization slag alkali-activated granulated blast-furnace slag[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 170-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202301017.htm
    [10]
    ZHANG P, GAO Z, WANG J, et al. Properties of fresh and hardened fly ash/slag based geopolymer concrete: a review[J]. Journal of Cleaner Production, 2020, 270: 122389. doi: 10.1016/j.jclepro.2020.122389
    [11]
    ZHAO J H, TONG L Y, LI B E, et al. Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment[J]. Journal of Cleaner Production, 2021, 307: 127085. doi: 10.1016/j.jclepro.2021.127085
    [12]
    SHARIATI M, SHARIATI A, TRUNG N T, et al. Alkali-activated slag (AAS) paste: correlation between durability and microstructural characteristics[J]. Construction and Building Materials, 2021, 267: 120886. doi: 10.1016/j.conbuildmat.2020.120886
    [13]
    ASKARIAN M, TAO Z, SAMALI B, et al. Mix composition and characterisation of one-part geopolymers with different activators[J]. Construction and Building Materials, 2019, 225: 526-537. doi: 10.1016/j.conbuildmat.2019.07.083
    [14]
    YI Y L, LI C, LIU S Y. Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay[J]. Journal of Materials in Civil Engineering, 2015, 27(4): 04014146. doi: 10.1061/(ASCE)MT.1943-5533.0001100
    [15]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [16]
    JIANG M Y, QIAN Y F, SUN Q. Preparation of controlled low-strength materials from alkali-excited red mud-slag-iron tailings sand and a study of the reaction mechanism[J]. Environmental Science and Pollution Research, 2023, 30(9): 22232-22248.
    [17]
    LI Y D, LI J F, CUI J, et al. Experimental study on calcium carbide residue as a combined activator for coal gangue geopolymer and feasibility for soil stabilization[J]. Construction and Building Materials, 2021, 312: 125465. doi: 10.1016/j.conbuildmat.2021.125465
    [18]
    许福, 蒋川梓, 张书经, 等. 碱激发矿渣固化土压平衡盾构渣土的试验研究[J]. 地下空间与工程学报, 2022, 18(3): 849-859. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202203017.htm

    XU Fu, JIANG Chuanzi, ZHANG Shujing, et al. Experimental study on alkali activated slag solidification of earth pressure balance shield muck[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(3): 849-859. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202203017.htm
    [19]
    WANG D X, GAO X Y, LIU X Q, et al. Strength, durability and microstructure of granulated blast furnace slag-modified magnesium oxychloride cement solidified waste sludge[J]. Journal of Cleaner Production, 2021, 292: 126072. doi: 10.1016/j.jclepro.2021.126072
    [20]
    WANG D, CHEN Z, GAO X. Sustainable improvement of magnesium oxychloride cement solidified waste sludge with fly-ash inclusion[J]. Journal of Materials in Civil Engineering, 2022, 34(12): 04022317. doi: 10.1061/(ASCE)MT.1943-5533.0004476
    [21]
    BALONIS M, LOTHENBACH B, LE SAOUT G, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems[J]. Cement and Concrete Research, 2010, 40(7): 1009-1022. doi: 10.1016/j.cemconres.2010.03.002
    [22]
    PROVIS J L. Geopolymers and other alkali activated materials: why, how, and what?[J]. Materials and Structures, 2014, 47(1): 11-25.
    [23]
    LIU J, HU L, TANG L P, et al. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material[J]. Journal of Hazardous Materials, 2021, 402: 123451. doi: 10.1016/j.jhazmat.2020.123451
    [24]
    TAN J W, DE VLIEGER J, DESOMER P, et al. Co-disposal of construction and demolition waste (CDW) and municipal solid waste incineration fly ash (MSWI FA) through geopolymer technology[J]. Journal of Cleaner Production, 2022, 362: 132502. doi: 10.1016/j.jclepro.2022.132502
    [25]
    YI C, MA H Q, CHEN H Y, et al. Preparation and characterization of coal gangue geopolymers[J]. Construction and Building Materials, 2018, 187: 318-326. doi: 10.1016/j.conbuildmat.2018.07.220
    [26]
    ISMAIL I, BERNAL S A, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Composites, 2014, 45: 125-135. doi: 10.1016/j.cemconcomp.2013.09.006
    [27]
    杨达, 卢明阳, 宋迪, 等. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(7): 644-649. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2021S1124.htm

    YANG Da, LU Mingyang, SONG Di, et al. Research progress of geopolymer cement[J]. Materials Reports, 2021, 35(7): 644-649. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2021S1124.htm

Catalog

    Article views (343) PDF downloads (68) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return