• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Feng, ZHANG Junhui, ZHANG Sheng, ZHENG Jianlong, SHENG Daichao. Experimental study on migration and deposition of particles under alternating dynamic and static loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1057-1066. DOI: 10.11779/CJGE20230168
Citation: GAO Feng, ZHANG Junhui, ZHANG Sheng, ZHENG Jianlong, SHENG Daichao. Experimental study on migration and deposition of particles under alternating dynamic and static loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1057-1066. DOI: 10.11779/CJGE20230168

Experimental study on migration and deposition of particles under alternating dynamic and static loads

More Information
  • Received Date: February 25, 2023
  • Available Online: June 01, 2023
  • The study on the migration and deposition of suspended particles in subgrade is important to reveal the generation and disaster-causing mechanism of mud pumping. The effects of magnitude of dynamic loads, intermittent duration of static loads and repetition number of alternating dynamic and static loads on the migration and deposition of particles are studied by carrying out the mud pumping tests on the layered gravel-sandy silt column. According to the hydrodynamic response characteristics of specimens, the driving mechanism of particle migration is analyzed. The test results show that the suspended particles migrate upward under hydrodynamic force and settle under gravity during the interval of static loads, which results in the fluctuating growth of slurry turbidity in the gravel layer. The particle suspension increment tends to decrease with the increasing repetition of alternating dynamic and static loads, and these particles gradually clog gravel pores and inhibit mud pumping to a certain extent. Increasing the dynamic frequency and stress can further reduce the internal stability of the sandy silt surface layer. However, compared with increasing the dynamic stress, increasing the loading frequency is more beneficial to increase the particle migration mass and vertical migration distance.
  • [1]
    中华人民共和国交通运输部. 李小鹏出席国新办"权威部门话开局"新闻发布会, 强调: 奋力加快建设交通强国努力当好中国现代化的开路先锋[EB/OL]. 2023-02-24. https://www.mot.gov.cn/jiaotongyaowen/202302/t20230224_3763233.html.

    Ministry of Transport of the People's Republic of China. Li Xiaopeng attended the press conference of the "authority department speech opening" of the state information office and stressed: strive to speed up the construction of transportation power and strive to be the pioneer of china's modernization. [EB/OL]. 2023-02-24. https://www.mot.gov.cn/jiaotongyaowen/202302/t20230224_3763233.html. ) (in Chinese)
    [2]
    张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1-13. doi: 10.3969/j.issn.1001-7372.2020.01.001

    ZHANG Junhui, PENG Junhui, ZHENG Jianlong. Progress and prospect of the prediction model of the resilient modulus of subgrade soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1-13. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.01.001
    [3]
    彭惠, 马巍, 穆彦虎, 等. 青藏公路普通填土路基长期变形特征与路基病害调查分析[J]. 岩土力学, 2015, 36(7): 2049-2056. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507037.htm

    PENG Hui, MA Wei, MU Yanhu, et al. Analysis of disease investigation and long-term deformation characteristics of common fill embankment of the Qinghai-Tibet Highway[J]. Rock and Soil Mechanics, 2015, 36(7): 2049-2056. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507037.htm
    [4]
    NGUYEN T T, INDRARATNA B, KELLY R. Mud pumping under railtracks: mechanisms, assessments and solutions[J]. Australian Geomechanics, 2019, 54(4): 59-80.
    [5]
    杨新安, 高艳灵. 沪宁铁路翻浆冒泥病害的地质雷达检测[J]. 岩石力学与工程学报, 2004, 23(1): 116-119. doi: 10.3321/j.issn:1000-6915.2004.01.022

    YANG Xinan, GAO Yanling. GPR inspection for Shanghai-nanjing railway trackbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 116-119. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.01.022
    [6]
    MNEINA A, SHALABY A. Relating gradation parameters to mechanical and drainage performance of unbound granular materials[J]. Transportation Geotechnics, 2020, 23(6): 100315. http://www.xueshufan.com/publication/2999576606
    [7]
    边学成, 李书豪, 万章博, 等. 路基注浆对高速铁路轨道-路基体系动力特性的影响[J]. 振动与冲击, 2022, 41(4): 294-302. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202204038.htm

    BIAN Xuecheng, LI Shuhao, WAN Zhangbo, et al. Influence of injection remediation on dynamic behaviors of a high-speed railway track-subgrade system[J]. Journal of Vibration and Shock, 2022, 41(4): 294-302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202204038.htm
    [8]
    KERMANI B, XIAO M, STOFFELS S M, et al. Reduction of subgrade fines migration into subbase of flexible pavement using geotextile[J]. Geotextiles and Geomembranes, 2018, 46(4): 377-383. doi: 10.1016/j.geotexmem.2018.03.006
    [9]
    INDRARATNA B, BABAR SAJJAD M, NGO T, et al. Improved performance of ballasted tracks at transition zones: a review of experimental and modelling approaches[J]. Transportation Geotechnics, 2019, 21: 100260. doi: 10.1016/j.trgeo.2019.100260
    [10]
    HAYASHI S, SHAHU J T. Mud pumping problem in tunnels on erosive soil deposits[J]. Géotechnique, 2000, 50(4): 393-408. doi: 10.1680/geot.2000.50.4.393
    [11]
    BEDRIKOVETSKY P, CARUSO N. Analytical model for fines migration during water injection[J]. Transport in Porous Media, 2014, 101(2): 161-189. doi: 10.1007/s11242-013-0238-7
    [12]
    WANK J R, GEORGE S M, WEIMER A W. Vibro-fluidization of fine boron nitride powder at low pressure[J]. Powder Technology, 2001, 121(2/3): 195-204.
    [13]
    MAWATARI Y, KOIDE T, TATEMOTO Y, et al. Effect of particle diameter on fluidization under vibration[J]. Powder Technology, 2002, 123(1): 69-74. doi: 10.1016/S0032-5910(01)00432-6
    [14]
    周健, 杨永香, 刘洋, 等. 循环荷载下砂土液化特性颗粒流数值模拟[J]. 岩土力学, 2009, 30(4): 1083-1088. doi: 10.3969/j.issn.1000-7598.2009.04.039

    ZHOU Jian, YANG Yongxiang, LIU Yang, et al. Numerical modeling of sand liquefaction behavior under cyclic loading[J]. Rock and Soil Mechanics, 2009, 30(4): 1083-1088. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.04.039
    [15]
    ZHOU L F, WANG J W, GE W, et al. Quantifying growth and breakage of agglomerates in fluid-particle flow using discrete particle method[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 914-921. doi: 10.1016/j.cjche.2017.05.018
    [16]
    ZHOU K, HOU J, SUN Q C, et al. A study on particle suspension flow and permeability impairment in porous media using LBM-DEM-IMB simulation method[J]. Transport in Porous Media, 2018, 124(3): 681-698. doi: 10.1007/s11242-018-1089-z
    [17]
    ALOBAIDI I, HOARE D. Factors affecting the pumping of fines at the subgrade subbase interface of highway pavements: a laboratory study[J]. Geosynthetics International, 1994, 1(2): 221-259. doi: 10.1680/gein.1.0010
    [18]
    KERMANI B, XIAO M, STOFFELS S M, et al. Measuring the migration of subgrade fine particles into subbase using scaled accelerated flexible pavement testing–a laboratory study[J]. Road Materials and Pavement Design, 2019, 20(1): 36-57. doi: 10.1080/14680629.2017.1374995
    [19]
    蔡袁强, 严舒豪, 曹志刚, 等. 交通荷载下粉质黏土路基翻浆冒泥机理试验[J]. 吉林大学学报(工学版), 2021, 51(5): 1742-1748. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202105022.htm

    CAI Yuanqiang, YAN Shuhao, CAO Zhigang, et al. Experiments to investigate mechanism of mud pumping of road base on silty clay soil under cyclic loading[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1742-1748. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202105022.htm
    [20]
    韩博文, 蔡国庆, 李舰, 等. 有砟轨道路基翻浆冒泥模型试验系统的研发与应用[J]. 岩土工程学报, 2022, 44(8): 1406-1415. doi: 10.11779/CJGE202208005

    HAN Bowen, CAI Guoqing, LI Jian, et al. Development and application of model test system for mud pumping in ballasted track subgrade[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1406-1415. (in Chinese) doi: 10.11779/CJGE202208005
    [21]
    白冰, 张鹏远, 宋晓明, 等. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786-1793. doi: 10.11779/CJGE201510006

    BAI Bing, ZHANG Pengyuan, SONG Xiaoming, et al. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786-1793. (in Chinese) doi: 10.11779/CJGE201510006
    [22]
    张升, 高峰, 陈琪磊, 等. 砂-粉土混合料在列车荷载作用下细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm

    ZHANG Sheng, GAO Feng, CHEN Qilei, et al. Experimental study of fine particles migration mechanism of sand-silt mixtures under train load[J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm
    [23]
    ZHANG S, GAO F, HE X Z, et al. Experimental study of particle migration under cyclic loading: effects of load frequency and load magnitude[J]. Acta Geotechnica, 2021, 16(2): 367-380. doi: 10.1007/s11440-020-01137-x
    [24]
    GAO F, HE X Z, ZHANG S. Pumping effect of rainfall-induced excess pore pressure on particle migration[J]. Transportation Geotechnics, 2021, 31: 100669. doi: 10.1016/j.trgeo.2021.100669
    [25]
    GAO F, ZHANG S, HE X Z, et al. Experimental study on migration behavior of sandy silt under cyclic load[J]. ASCE-Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(5): 06022003. doi: 10.1061/(ASCE)GT.1943-5606.0002796
    [26]
    Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis: ASTM D6913/D6913M-17[S]. 2017.
    [27]
    TASALLOTI A, MARSHALL A M, HERON C M, et al. Geocellular railway drainage systems: physical and numerical modelling[J]. Transportation Geotechnics, 2020, 22: 100299. doi: 10.1016/j.trgeo.2019.100299
    [28]
    SHENG D, ZHANG S, NIU F, et al. A potential new frost heave mechanism in high-speed railway embankments[J]. Géotechnique, 2014, 64(2): 144-154. doi: 10.1680/geot.13.P.042
    [29]
    BIAN X C, LI W, HU J, et al. Geodynamics of high-speed railway[J]. Transportation Geotechnics, 2018, 17: 69-76. doi: 10.1016/j.trgeo.2018.09.007
    [30]
    LAWRENCE M, BULLOCK R, LIU Z M. China's High-Speed Rail Development[M]. Washington D C: World Bank, 2019.
    [31]
    TERZAGHI K V. The Shearing resistance of saturated soils and the angle between the planes of shear[C]//Proceedings of the 1th International Conference on Soil Mechanics and Foundation Engineering, Cambridge, 1936: 54-56.
    [32]
    MCDOUGAL W G, TSAI Y T, LIU P L F, et al. Wave-induced pore water pressure accumulation in marine soils[J]. Journal of Offshore Mechanics and Arctic Engineering, 1989, 111(1): 1-11. doi: 10.1115/1.3257133
    [33]
    BRAY J D, SANCIO R B. Assessment of the liquefaction susceptibility of fine-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1165-1177. doi: 10.1061/(ASCE)1090-0241(2006)132:9(1165)
    [34]
    LI J E, ZHANG J H, ZHANG A S, et al. Evaluation on deformation behavior of granular base material during repeated load triaxial testing by discrete-element method[J]. International Journal of Geomechanics, 2022, 22(11): 1-11.
    [35]
    WINTERWERP J C, DE BOER G J, GREEUW G, et al. Mud-induced wave damping and wave-induced liquefaction[J]. Coastal Engineering, 2012, 64: 102-112. doi: 10.1016/j.coastaleng.2012.01.005
  • Cited by

    Periodical cited type(20)

    1. 刘新荣,罗新飏,郭雪岩,周小涵,王浩,许彬,郑颖人. 巫山段岸坡水岩劣化特征及危岩失稳破坏模式. 工程地质学报. 2025(01): 240-257 .
    2. 郭双枫,府金宇,张鹏,李宁. 断层控制的蠕滑型顺层岩质滑坡变形破坏机制与失稳模式. 地震工程学报. 2025(03): 542-553 .
    3. 白继航. 基于数值模拟的顺层岩质边坡动力响应研究. 山西交通科技. 2025(02): 62-65+110 .
    4. 刘新荣,王浩,郭雪岩,罗新飏,周小涵,许彬. 考虑消落带岩体劣化影响的典型危岩岸坡稳定性研究. 岩土力学. 2024(02): 563-576 .
    5. 何钰铭,赵振洋,谢迪,王金波,黄宁. 三峡库区岩质库岸劣化变形演化过程与规律分析——以破水峡库岸为例. 中国资源综合利用. 2024(02): 26-29 .
    6. 谢周州,赵炼恒,李亮,黄栋梁,张子健,周靖. 基于振动台试验的不同含石率土-石混合体边坡地震动响应差异性研究. 岩土力学. 2024(08): 2324-2337 .
    7. 周开挥,王玉良,韩嘉琦. 德兴铜矿南平山边坡稳定性分析及治理. 建筑技术开发. 2024(08): 123-126 .
    8. 赵黎,粟登峰,谭宝会,胡颖鹏,陈帮洪,李正国. 基于CRITIC-GRA-AHP法的敏感性排序理论及其在边坡稳定性分析中的应用. 矿业研究与开发. 2024(09): 82-93 .
    9. 张嘉伦,马强,蒋汇鹏. P_1波在饱和土和饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2024(10): 3139-3152 .
    10. 王通,刘先峰,侯召旭,张俊,邵珠杰,田士军,胡金山. 碎裂状顺层岩质边坡地震动力响应与破坏模式. 工程科学与技术. 2023(02): 39-49 .
    11. 李天降. 富含伊利石软弱夹层的宣威群路堑顺层边坡开挖优化分析. 安全与环境工程. 2023(02): 129-135 .
    12. 刘新荣,郭雪岩,许彬,周小涵,曾夕,谢应坤,王?. 含消落带劣化岩体的危岩边坡动力累积损伤机制研究. 岩土力学. 2023(03): 637-648 .
    13. 蒋汇鹏,马强,曹亚鹏. P波在弹性介质与饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2023(03): 916-929 .
    14. 周昌,马文超,胡元骏,史光明. 基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理. 工程地质学报. 2023(04): 1407-1417 .
    15. 邹广明. 基于模型试验的堤防岸坡土层含水特征及安全稳定性影响研究. 四川水利. 2023(04): 38-42 .
    16. 黄浩,余姝,郭健,赵鹏,张枝华. 顺层陡倾斜坡溃屈破坏机理研究. 煤炭科技. 2023(05): 9-16 .
    17. 宋健. 某高速公路岩质高边坡破坏机理及稳定性分析. 山西建筑. 2023(24): 82-85 .
    18. 魏宇,曾令涛. 岩质高边坡稳定性分析及防治措施研究——以洋溪水利枢纽船闸下引航道高边坡为例. 广西水利水电. 2023(06): 1-8 .
    19. 殷跃平,王鲁琦,赵鹏,张枝华,黄波林,王雪冰. 三峡库区高陡岸坡溃屈失稳机理及防治研究. 水利学报. 2022(04): 379-391 .
    20. 宋俊宏. 基于PFC的乔连河岸坡岩石力学特性及动力响应特征研究. 甘肃水利水电技术. 2022(06): 27-31+37 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return