• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074
Citation: CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074

Delayed crushing time for particles of rockfill materials

More Information
  • Received Date: February 02, 2023
  • Available Online: June 04, 2024
  • The delayed crushing of rockfill particles is specifically referring to the crushing of particles after loading for a certain period time, which is the basis for the rheological deformation calculation using the discrete element method (DEM). Based on the fracture mechanics, the internal defects of particles are generalized into a coin-shaped crack, and the relationship between the instantaneous crushing strength of particles and the half-length of the crack is developed. The Logistic function is used to describe the distribution of particle strength as a random variable, and the probability distribution of half-length of crack is obtained by using the method of solving the probability distribution of random variable function. The rockfill particle is processed into a plate specimen, and its sub-critical crack propagation velocity is measured using a bi-torsional relaxation test. On this basis, the formula for crack propagation of particles is integrated to obtain the time expression for crack penetration (i.e. delayed particle crushing). The probability distribution of delayed crushing time of particles can be calculated using the half-length of the crack as a random variable. The results of dolomite particles in Hongshiyan landslide dam in Yunnan Province show that under the same stress level, large particles have long delayed crushing time and large standard deviation, while small particles have short delayed crushing time and small standard deviation. This is consistent with the macro-phenomenon that the rheological deformation of rockfill materials converges quickly in laboratory tests, while the rheological deformation of rockfill dam lasts a long time in field. The development of delayed crushing time of particles provides conditions for simulating the rheological behaviors of rockfill using the DEM, improving the rheological constitutive model for rockfill materials, and solving the time size-effects of rockfill rheology for laboratory tests.
  • [1]
    马刚, 周伟, 常晓林, 等. 颗粒劣化效应的堆石料流变细观数值模拟[J]. 岩土力学, 2012, 33(增刊1): 257-264.

    MA Gang, ZHOU Wei, CHANG Xiaolin, et al. Meso-numerical simulation of rheological behavior of rockfill materials due to particle deterioration effect[J]. Rock and Soil Mechanics, 2012, 33(S1): 257-264. (in Chinese)
    [2]
    MA G, ZHOU W, NG T T, et al. Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model[J]. Acta Geotechnica, 2015, 10(4): 481-496. doi: 10.1007/s11440-015-0367-y
    [3]
    WANG Y J, SONG E X, ZHAO Z H. Particle mechanics modeling of the effect of aggregate shape on creep of durable rockfills[J]. Computers and Geotechnics, 2018, 98: 114-131. doi: 10.1016/j.compgeo.2018.02.013
    [4]
    ZHAO Z H, SONG E X. Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions[J]. Computers and Geotechnics, 2015, 68: 137-146. doi: 10.1016/j.compgeo.2015.04.008
    [5]
    LOBO-GUERRERO S, VALLEJO L E. Application of weibull statistics to the tensile strength of rock aggregates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(6): 786-790. doi: 10.1061/(ASCE)1090-0241(2006)132:6(786)
    [6]
    米晓飞, 迟世春. 堆石颗粒强度的尺寸效应研究[J]. 水利与建筑工程学报, 2019, 17(4): 182-187, 197. doi: 10.3969/j.issn.1672-1144.2019.04.032

    MI Xiaofei, CHI Shichun. Size effects of rockfill particle strength[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(4): 182-187, 197. (in Chinese) doi: 10.3969/j.issn.1672-1144.2019.04.032
    [7]
    MCDOWELL G R. On the yielding and plastic compression of sand[J]. Soils and Foundations, 2002, 42(1): 139-145. doi: 10.3208/sandf.42.139
    [8]
    OVALLE C, FROSSARD E, DANO C, et al. The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data[J]. Acta Mechanica, 2014, 225(8): 2199-2216. doi: 10.1007/s00707-014-1127-z
    [9]
    ROZENBLAT Y, PORTNIKOV D, LEVY A, et al. Strength distribution of particles under compression[J]. Powder Technology, 2011, 208(1): 215-224. doi: 10.1016/j.powtec.2010.12.023
    [10]
    DELUZARCHE R, CAMBOU B. Discrete numerical modelling of rockfill dams[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(11): 1075-1096. doi: 10.1002/nag.514
    [11]
    ALAEI E, MAHBOUBI A. A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon[J]. Granular Matter, 2012, 14(6): 707-717. doi: 10.1007/s10035-012-0367-7
    [12]
    ALONSO E E, TAPIAS M, GILI J. Scale effects in rockfill behaviour[J]. Géotechnique Letters, 2012, 2(3): 155-160. doi: 10.1680/geolett.12.00025
    [13]
    胡训健, 卞康, 谢正勇, 等. 细观结构的非均质性对花岗岩强度及变形影响的颗粒流模拟[J]. 岩土工程学报, 2020, 42(8): 1540-1548. doi: 10.11779/CJGE202008020

    HU Xunjian, BIAN Kang, XIE Zhengyong, et al. Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1540-1548. (in Chinese) doi: 10.11779/CJGE202008020
    [14]
    邵磊, 迟世春, 王振兴. 基于裂缝扩展的堆石料流变细观模型[J]. 岩土工程学报, 2013, 35(1): 66-75.

    SHAO Lei, CHI Shichun, WANG Zhenxing. Rheological model for rockfill based on sub-critical crack expansion theory[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 66-75. (in Chinese)
    [15]
    中国航空研究院. 应力强度因子手册[M]. 北京: 科学出版社, 1993.

    Chinese Aeronautical Establishment. Handbook of Stress Intensity Factors[M]. Beijing: Science Press, 1993. (in Chinese)
    [16]
    SRIVASTAVA K N, DWIVEDI J P. The effect of a penny-shaped crack on the distribution of stress in an elastic sphere[J]. International Journal of Engineering Science, 1971, 9(4): 399-420. doi: 10.1016/0020-7225(71)90060-7
    [17]
    CHAU K T, WEI X X, WONG R H C, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses[J]. Mechanics of Materials, 2000, 32(9): 543-554. doi: 10.1016/S0167-6636(00)00026-0
    [18]
    CHARLES R J. Static fatigue of glass. Ⅱ[J]. Journal of Applied Physics, 1958, 29(11): 1554-1560. doi: 10.1063/1.1722992
    [19]
    王腾腾. 堆石颗粒延迟劈裂破碎时间效应研究[D]. 大连: 大连理工大学, 2022.

    WANG Tengteng. Study on Time Effect of Delayed Fracturing of Rockfill Particles[D]. Dalian: Dalian University of Technology, 2022. (in Chinese)
    [20]
    WILLIAMS D P, EVANS A G. A simple method for studying slow crack growth[J]. Journal of Testing and Evaluation, 1973, 1(4): 264-270. doi: 10.1520/JTE10015J
    [21]
    沈珠江. 土石料的流变模型及其应用[J]. 水利水运科学研究, 1994(4): 335-342.

    SHEN Zhujiang. Rheological model of soil and stone and its application[J]. Hydro-Science and Engineering, 1994(4): 335-342. (in Chinese)
    [22]
    沈珠江. 鲁布革心墙堆石坝变形的反馈分析[J]. 岩土工程学报, 1994, 16(3): 1-13.

    SHEN Zhujiang. Feedback analysis of deformation of Lubuge core rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 1-13. (in Chinese)

Catalog

    Article views (273) PDF downloads (80) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return