• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Lizhong, LAI Yongqing, HONG Yi, ZHANG Youhu. A unified "p-y+M-θ " model for laterally loaded piles considering rigidities of various piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 905-918. DOI: 10.11779/CJGE20230042
Citation: WANG Lizhong, LAI Yongqing, HONG Yi, ZHANG Youhu. A unified "p-y+M-θ " model for laterally loaded piles considering rigidities of various piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 905-918. DOI: 10.11779/CJGE20230042

A unified "p-y+M-θ " model for laterally loaded piles considering rigidities of various piles

More Information
  • Received Date: January 12, 2023
  • Available Online: May 14, 2024
  • The large-diameter monopiles account for over 70% in construction of offshore wind turbines in China. The current p-y curve design method is primarily suitable for the small-diameter flexible piles. It has long been recognized that the method is inadequate to describe the lateral behavior of large-diameter monopiles, due to the ignorance of the soil resistances arising from base shear and base moment, which becomes more pronounced as the pile rigidity increases. Consequently, it will significantly underestimate the deformation and capacity of the semi-rigid and rigid piles (commonly used in offshore wind projects in China and Europe, respectively), bringing challenges for cost reduction. In light of these issues, the authors have proposed a "p-y+M-θ"model that aims to reasonably predict the lateral monotonic response of monopiles with a broad coverage of rigidities (or length-over-diameter ratios) in a unified way. An extension of the model is then made to enable the capability for predicting the cumulative lateral behavior under cyclic loadings. With the proposed "p-y+M-θ"model, the authors are invited by the Organizing Committee of 4th International Symposium on Offshore Geotechnical Engineering (ISFOG-2020) to participate in a blind Class-A prediction event, where the experimental data are generated from the centrifuge tests performed by University of Western Australia (UWA) on piles in soft clay under lateral monotonic and cyclic loadings. The results of some element tests for the same clay as used in the centrifuge tests are provided ahead of the Class-A prediction event, for calibrating the model parameters. All the measured responses of lateral piles under monotonic and cyclic loadings are found to be reasonably reproduced by the proposed "p-y+M-θ"model. Compared to the predictive capability of the other 28 models used by the parallel international teams participating in the prediction event, the "p-y+M-θ"model shows a leading performance in the context of monotonic and cyclic predictions. The proposed "p-y+M-θ"model constitutes an advantageous and simple alternative to the design of monopiles under lateral loads.
  • [1]
    DOHERTY P, GAVIN K. Laterally loaded monopile design for offshore wind farms[J]. Proceedings of the Institution of Civil Engineers-Energy, 2012, 165(1): 7-17. doi: 10.1680/ener.11.00003
    [2]
    MURPHY G, IGOE D, DOHERTY P, et al. 3D FEM approach for laterally loaded monopile design[J]. Computers and Geotechnics, 2018, 100: 76-83. doi: 10.1016/j.compgeo.2018.03.013
    [3]
    张磊, 龚晓南, 俞建霖. 水平荷载单桩计算的非线性地基反力法研究[J]. 岩土工程学报, 2011, 33(2): 309-314. http://cge.nhri.cn/cn/article/id/13920

    ZHANG Lei, GONG Xiaonan, YU Jianlin. Solutions for laterally loaded single pile by nonlinear subgrade reaction method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 309-314. (in Chinese) http://cge.nhri.cn/cn/article/id/13920
    [4]
    苏静波, 邵国建, 刘宁. 基于P-Y曲线法的水平受荷桩非线性有限元分析[J]. 岩土力学, 2006, 27(10): 1781-1785. doi: 10.3969/j.issn.1000-7598.2006.10.028

    SU Jingbo, SHAO Guojian, LIU Ning. Nonlinear finite element analysis of piles under lateral load based on P-Y curves[J]. Rock and Soil Mechanics, 2006, 27(10): 1781-1785. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.10.028
    [5]
    MATLOCK H. Correlation for design of laterally loaded piles in soft clay[C]// Offshore Technology Conference, Houston, 1970.
    [6]
    JEANJEAN P. Re-assessment of P-Y curves for soft clays from centrifuge testing and finite element modeling[C]// Offshore Technology Conference, Houston, 2009.
    [7]
    TRUONG P, LEHANE B M. Effects of pile shape and pile end condition on the lateral response of displacement piles in soft clay[J]. Géotechnique, 2018, 68(9): 794-804. doi: 10.1680/jgeot.16.P.291
    [8]
    朱斌, 杨永垚, 余振刚, 等. 海洋高桩基础水平单调及循环加载现场试验[J]. 岩土工程学报, 2012, 34(6): 1028-1037. http://cge.nhri.cn/cn/article/id/14602

    ZHU Bin, YANG Yongyao, YU Zhengang, et al. Field tests on lateral monotonic and cyclic loadings of offshore elevated piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1028-1037. (in Chinese) http://cge.nhri.cn/cn/article/id/14602
    [9]
    朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807-1815. http://cge.nhri.cn/cn/article/id/15299

    ZHU Bin, XIONG Gen, LIU Jinchao, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807-1815. (in Chinese) http://cge.nhri.cn/cn/article/id/15299
    [10]
    黄茂松, 马昊, 李森, 等. 软黏土中水平受荷桩的静力和循环p-y曲线[J]. 岩土工程学报, 2017, 39(增刊2): 9-12. doi: 10.11779/CJGE2017S2003

    HUANG Maosong, MA Hao, LI Sen, et al. Static and cyclic p-y curves for laterally loaded piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 9-12. (in Chinese) doi: 10.11779/CJGE2017S2003
    [11]
    黄茂松, 俞剑, 张陈蓉. 基于应变路径法的黏土中水平受荷桩p-y曲线[J]. 岩土工程学报, 2015, 37(3): 400-409. doi: 10.11779/CJGE201503002

    HUANG Maosong, YU Jian, ZHANG Chenrong. p-y curves of laterally loaded piles in clay based on strain path approach[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 400-409. (in Chinese) doi: 10.11779/CJGE201503002
    [12]
    张海洋, 刘润, 袁宇, 等. 海上大直径单桩基础p-y曲线修正[J]. 水利学报, 2020, 51(2): 201-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202002008.htm

    ZHANG Haiyang, LIU Run, YUAN Yu, et al. A modified p-y curve method for offshore large-diameter monopile foundations[J]. Journal of Hydraulic Engineering, 2020, 51(2): 201-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202002008.htm
    [13]
    王卫, 闫俊义, 刘建平. 基于海上风电试桩数据的大直径桩p-y模型研究[J]. 岩土工程学报, 2021, 43(6): 1131-1138. doi: 10.11779/CJGE202106017

    WANG Wei, YAN Junyi, LIU Jianping. Study on p-y models for large-diameter pile foundation based on in situ tests of offshore wind power[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1131-1138. (in Chinese) doi: 10.11779/CJGE202106017
    [14]
    竺明星, 卢红前, 戴国亮, 等. 基于侧阻硬化与软化模型的大直径桩基水平承载力研究[J]. 岩土工程学报, 2018, 40(增刊2): 132-136. doi: 10.11779/CJGE2018S2027

    ZHU Mingxing, LU Hongqian, DAI Guoliang, et al. Lateral bearing capacity of large-diameter pile foundation based on hardening and softening models of side resistance[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 132-136. (in Chinese) doi: 10.11779/CJGE2018S2027
    [15]
    WANG L Z, LAI Y Q, HONG Y, et al. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios[J]. Ocean Engineering, 2020, 212: 107492. doi: 10.1016/j.oceaneng.2020.107492
    [16]
    赖踊卿. 软黏土地基海上风机大直径单桩水平受荷特性与分析模型[D]. 杭州: 浙江大学, 2021.

    LAI Yongqing. Modelling of Lateral Behaviour of Large-Diameter Monopiles Supporting Offshore Wind Turbines in Soft Clay[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
    [17]
    LAI Y Q, WANG L Z, ZHANG Y H, et al. Site-specific soil reaction model for monopiles in soft clay based on laboratory element stress-strain curves[J]. Ocean Engineering, 2021, 220: 108437. doi: 10.1016/j.oceaneng.2020.108437
    [18]
    ISFOG. Cyclic loading prediction event flyer[C]// International Symposium on Frontiers in Offshore Geotechnics, Austin, 2020.
    [19]
    GUEVARA M, DOHERTY J P, GAUDIN C, et al. Evaluating uncertainty associated with engineering judgement in predicting the lateral response of conductors[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(5): 05022001. doi: 10.1061/(ASCE)GT.1943-5606.0002759
    [20]
    HONG Y, HE B, WANG L Z, et al. Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: centrifuge tests and numerical modelling[J]. Canadian Geotechnical Journal, 2017, 54(6): 806-824. doi: 10.1139/cgj-2016-0356
    [21]
    RANDOLPH M F, HOULSBY G T. The limiting pressure on a circular pile loaded laterally in cohesive soil[J]. Géotechnique, 1984, 34(4): 613-623. doi: 10.1680/geot.1984.34.4.613
    [22]
    YU J A, HUANG M S, ZHANG C R. Three-dimensional upper-bound analysis for ultimate bearing capacity of laterally loaded rigid pile in undrained clay[J]. Canadian Geotechnical Journal, 2015, 52(11): 1775-1790. doi: 10.1139/cgj-2014-0390
    [23]
    OSMAN A S, BOLTON M D. Simple plasticity-based prediction of the undrained settlement of shallow circular foundations on clay[J]. Géotechnique, 2005, 55(6): 435-447. doi: 10.1680/geot.2005.55.6.435
    [24]
    王立忠, 刘亚竞, 龙凡, 等. 软土地铁深基坑倒塌分析[J]. 岩土工程学报, 2020, 42(9): 1603-1611. doi: 10.11779/CJGE202009004

    WANG Lizhong, LIU Yajing, LONG Fan, et al. Collapse of deep excavations for metro lines in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1603-1611. (in Chinese) doi: 10.11779/CJGE202009004
    [25]
    ZHANG Y H, ANDERSEN K H. Scaling of lateral pile p-y response in clay from laboratory stress-strain curves[J]. Marine Structures, 2017, 53: 124-135. doi: 10.1016/j.marstruc.2017.02.002
    [26]
    ZHANG Y H, ANDERSEN K H, JEANJEAN P, et al. Validation of monotonic and cyclic p-y framework by lateral pile load tests in stiff, overconsolidated clay at the haga site[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020080. doi: 10.1061/(ASCE)GT.1943-5606.0002318
    [27]
    王立忠, 叶盛华, 沈恺伦, 等. K0固结软土不排水抗剪强度[J]. 岩土工程学报, 2006, 28(8): 970-977. http://cge.nhri.cn/cn/article/id/12136

    WANG Lizhong, YE Shenghua, SHEN Kailun, et al. Undrained shear strength of K0 consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 970-977. (in Chinese) http://cge.nhri.cn/cn/article/id/12136
    [28]
    王立忠, 但汉波, 李玲玲. K0固结软土的循环剪切特性及其流变模拟[J]. 岩土工程学报, 2010, 32(12): 1946-1955. http://cge.nhri.cn/cn/article/id/9135

    WANG Lizhong, DAN Hanbo, LI Lingling. Cyclic shearing behavior of K0-consolidated clay and its rheological simulation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1946-1955. (in Chinese) http://cge.nhri.cn/cn/article/id/9135
    [29]
    ANDERSEN K H. Cyclic soil parameters for offshore foundation design[C]//The 3rd McClelland Lecture, London, 2015.
    [30]
    ZHANG Y, ANDERSEN K H, KLINKVORT R T, et al. Monotonic and cyclic p-y curves for clay based on soil performance observed in laboratory element tests[C]// Proc Offshore Technology Conf, Houston, 2016.
    [31]
    GRIMSTAD G, ANDRESEN L, JOSTAD H P. NGI-ADP: Anisotropic shear strength model for clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(4): 483-497.
  • Cited by

    Periodical cited type(12)

    1. 王鹏,王海,孙利琴,应本林,程熙洋,李永辉. 应力作用下黄泛区粉土的孔隙特征研究. 四川建筑科学研究. 2025(02): 60-69 .
    2. 武亚军,岳皓凡,臧学轲,张旭东,章长松,吴金红. 不同黏粒含量土的固结和重金属吸附解吸特性. 长江科学院院报. 2025(05): 88-96 .
    3. 李珊,李培勇. 硅酸钾溶液对黏性土体微观结构的影响研究. 广东建材. 2024(01): 9-13 .
    4. 王静,胡金虎,杨亚源,周邦龙,任帅. 分级循环荷载下粉土动力特性研究. 水利与建筑工程学报. 2024(06): 166-171 .
    5. 曹胜飞,刘月妙,谢敬礼,张奇,杨明桃,高玉峰. 高放废物处置缓冲材料砌块抗压强度特性试验研究. 世界核地质科学. 2023(01): 58-67 .
    6. 刘猛,许晨曦,孟凡会,高静静,白赟,宋琳琳. 粉土颗粒分析试验影响因素分析. 济南大学学报(自然科学版). 2023(04): 493-498 .
    7. 沈吴钦,吴昌将,张军,毛良根,仲栋宇. 深基坑模型试验中相似土配比及其微观表征研究. 人民长江. 2023(09): 236-244 .
    8. 张岩,樊亮,王林,侯佳林,谷传庆. 黏粒含量对粉土抗压强度的影响. 路基工程. 2022(01): 44-48 .
    9. 谌文武,贾博博,覃一伦,贾全全. 融雪入渗下含硫酸盐遗址土的冻融劣化特征. 兰州大学学报(自然科学版). 2022(04): 521-527 .
    10. 尹振华,张建明,张虎,王宏磊. 融化压缩下水泥改良冻土的微观孔隙特征演变. 水文地质工程地质. 2021(02): 97-105 .
    11. 付佳佳,王炼,尤苏南,王旭东. 黏-砂混合土压缩特性与微观结构特征关系研究. 长江科学院院报. 2021(05): 115-122 .
    12. 何建新,糟凯龙,杨海华. 塔里木河胡杨实现自我恢复的新方法探索. 水电能源科学. 2021(07): 33-37 .

    Other cited types(19)

Catalog

    Article views (570) PDF downloads (202) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return