• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xiaoling, ZHAO Xianhui, XU Chengshun, JIA Kemin. Influences of different inclination modes on seismic response of inclined liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 728-736. DOI: 10.11779/CJGE20230024
Citation: ZHANG Xiaoling, ZHAO Xianhui, XU Chengshun, JIA Kemin. Influences of different inclination modes on seismic response of inclined liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 728-736. DOI: 10.11779/CJGE20230024

Influences of different inclination modes on seismic response of inclined liquefiable site

More Information
  • Received Date: January 07, 2023
  • Available Online: April 09, 2024
  • In the study of the failure and large deformation of inclined site caused by lateral flow expansion of soil after seismic liquefaction, different inclined modes will have a certain impact on the test results, but the research results on the impact evaluation of seismic response of inclined liquefiable site are still relatively rare at present. In this study, a numerical model for horizontal liquefiable field is established based on the OpenSees finite element platform according to the completed shaking table tests, and the influences of the model box on the dynamic response of soil are considered in this numerical model, and the validity of numerical model is verified by comparing with the shaking table test results. Then the finite element numerical model for inclined liquefiable site is established based on the horizontal numerical model, and three different numerical models for inclined shear box model, inclined soil in shear box model and inclined soil in rigid box model are established to simulate different inclination modes in the shaking table tests. Through comparison, the dynamic responses of soil calculated by three numerical models under the action of 0.3g Wenchuan earthquake Wolong wave are examined, and the influences of three different inclination modes on the results are analyzed, and some valuable conclusions about the researches on the numerical simulation and shaking table tests of seismic dynamic response of inclined liquefiable sites are shown.
  • [1]
    许成顺, 贾科敏, 杜修力, 等. 液化侧向扩展场地-桩基础抗震研究综述[J]. 防灾减灾工程学报, 2021, 41(4): 768-791. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202104009.htm

    XU Chengshun, JIA Kemin, DU Xiuli, et al. Review on seismic behavior of pile foundation subjected to liquefaction induced lateral spreading[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(4): 768-791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202104009.htm
    [2]
    HAMADA M, YASUDA S, ISOYAMA R, et al. Study on liquefaction induced permanent ground displacements and earthquake damage[J]. Proceedings of Japan Society of Civil Engineers, 1986(376): 221-229.
    [3]
    ZHOU Y G, XIA P, LING D S, et al. A liquefaction case study of gently sloping gravelly soil deposits in the nearfault region of the 2008 Mw 7.9 Wenchuan Earthquake[J]. Bulletin of Earthquake Engineering, 2020, 18(14): 6181-6201. doi: 10.1007/s10518-020-00939-4
    [4]
    BRUNET S, DE LA LLERA J C, JACOBSEN A, et al. Performance of port facilities in southern Chile during the 27 February 2010 Maule Earthquake[J]. Earthquake Spectra, 2012, 28(S1): 553-579.
    [5]
    BRADLEY K, MALLICK R, ANDIKAGUMI H, et al. Earthquake-triggered 2018 Palu Valley Landslides Enabled by Wet Rice Cultivation[J]. Nature Geoscience, 2019, 12(11): 935-939. doi: 10.1038/s41561-019-0444-1
    [6]
    DOBRY R, THEVANAYAGAM S, MEDINA C, et al. Mechanics of lateral spreading observed in a full-scale shake test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(2): 115-129. doi: 10.1061/(ASCE)GT.1943-5606.0000409
    [7]
    CHANG B J, HUTCHINSON T C. Experimental investigation of plastic demands in piles embedded in multi-layered liquefiable soils[J]. Soil Dynamic and Earthquake Engineering, 2013, 49(3): 146-156.
    [8]
    JIA K M, XU C S, EL NAGGAR M H, et al. Large-scale shake table testing of pile group-bridge model in inclined liquefiable soils with overlying crusts[J]. Soil Dynamics and Earthquake Engineering, 2022, 163: 107555. doi: 10.1016/j.soildyn.2022.107555
    [9]
    张鑫磊, 王志华, 许振巍, 等. 土体液化大位移条件下群桩动力反应振动台模型试验[J]. 工程力学, 2016, 33(5): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201605019.htm

    ZHANG Xinlei, WANG Zhihua, XU Zhenwei, et al. Shaking table model tests on dynamic response of pile groups under liquefaction-induced large ground displacement[J]. Engineering Mechanics, 2016, 33(5): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201605019.htm
    [10]
    ELGAMAL A, YANG Z, PARRA E. Computational modeling of cyclic mobility and post-liquefaction site response[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(4): 259-271. doi: 10.1016/S0267-7261(02)00022-2
    [11]
    周林禄, 苏雷, 邱志坚, 等. 基于OpenSees的砂土本构模型对比研究[J]. 地震工程学报, 2022, 44(1): 128-135, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202201016.htm

    ZHOU Linlu, SU Lei, QIU Zhijian, et al. Comparison of four constitutive models for sand based on OpenSees[J]. China Earthquake Engineering Journal, 2022, 44(1): 128-135, 151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202201016.htm
    [12]
    SU L, WAN H P, LUO Y Z, et al. Seismic performance assessment of a pile-supported wharf retrofitted with different slope strengthening strategies[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105903. doi: 10.1016/j.soildyn.2019.105903
    [13]
    MAZZONI S, MCKENNA F, SCOTT M H, et al. OpenSees Command Language Manual[R]. Berkeley: Pacific Earthquake Engineering Research Center, 2006.
    [14]
    许成顺, 豆鹏飞, 杜修力, 等. 液化自由场地震响应大型振动台模型试验分析[J]. 岩土力学, 2019, 40(10): 3767-3777. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910010.htm

    XU Chengshun, DOU Pengfei, DU Xiuli, et al. Large-scale shaking table model test of liquefiable free field[J]. Rock and Soil Mechanics, 2019, 40(10): 3767-3777. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910010.htm
  • Cited by

    Periodical cited type(5)

    1. 唐清枫,徐真,孙亚楼,张奇,谭琪,潘多强,吴王锁. 黏土矿物-生物复合胶体影响放射性核素迁移行为与机理研究进展. 核化学与放射化学. 2025(01): 1-16 .
    2. 吴鹏,王驹,凌辉,周志超,段佳欣,李南,段先哲. 甘肃北山新场深部地下水中铀的赋存形态及其影响因素的地球化学模拟研究. 原子能科学技术. 2024(05): 1007-1016 .
    3. 田云婷,谭凯旋,李咏梅,李春光,唐治鹏,李小杰. 还原条件下膨润土胶体稳定性研究. 南华大学学报(自然科学版). 2024(03): 47-52 .
    4. 邹威燕,周书葵,段毅. 不同地层中放射性核素迁移模型. 有色金属(冶炼部分). 2022(01): 79-87 .
    5. 朱帅润,李绍红,何博,吴礼舟. 改进的Picard法在非饱和土渗流中的应用研究. 岩土工程学报. 2022(04): 712-720 . 本站查看

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return