• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MO Pin-qiang, HU Jing, HU Yu-chen, MA Dan-yang, REN Zhi-wen. Physical modelling of thermal-cone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 169-172. DOI: 10.11779/CJGE2022S2037
Citation: MO Pin-qiang, HU Jing, HU Yu-chen, MA Dan-yang, REN Zhi-wen. Physical modelling of thermal-cone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 169-172. DOI: 10.11779/CJGE2022S2037

Physical modelling of thermal-cone penetration tests

More Information
  • Received Date: November 30, 2022
  • Available Online: March 26, 2023
  • In order to meet the requirements of precise design and high-quality development of shallow geothermal exploration and geothermal applications, a new in-situ testing technology is proposed for accurate and efficient estimations of both mechanics and thermal properties of soil layers by introducing the thermal-cone penetration tests (T-CPT). A CUMT type of heating T-CPT equipment and its testing method are then introduced. Considering the complex in-situ condition, a series of physical model tests are conducted to investigate the influences of heating time, penetration depth, soil density and moisture content on the thermal and mechanical responses, and therefore to look insights into the penetration and heat transfer mechanisms. The results of physical modelling indicate that 120s of heating time can reach the best heating efficiency of the probe, and the penetration at a larger depth with denser soil leads to a larger thermal conductivity after the back calculation. Additionally, the soil with larger relative density shows higher penetration resistance, whereas the increase of moisture content appears to decrease the penetration resistance.
  • [1]
    王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1–9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm

    WANG Gui-ling, LIU Yan-guang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1–9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
    [2]
    陈跃康. 新型绿色清洁能源浅层地温能[J]. 地球, 2020(2): 12–17. https://www.cnki.com.cn/Article/CJFDTOTAL-DIQU202002004.htm

    CHEN Yue-kang. Shallow geothermal energy of new green clean energy[J]. Earth, 2020(2): 12–17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DIQU202002004.htm
    [3]
    刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1): 176–181. doi: 10.11779/CJGE201401018

    LIU Han-long, KONG Gang-qiang, CHARLES W W N. Applications of energy piles and technical development of PCC energy piles [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176–181. (in Chinese) doi: 10.11779/CJGE201401018
    [4]
    LUTENEGGER A J, LALLY M J. In situ measurement of thermal conductivity in a soft clay[C]// Int Conf on In-Situ Measurement of Soil Properties and Case Histories. Bandung, 2001.
    [5]
    刘松玉, 郭易木, 张国柱, 等. 热传导CPT探头的研发与应用[J]. 岩土工程学报, 2020, 42(2): 354–361. doi: 10.11779/CJGE202002017

    LIU Song-yu, GUO Yi-mu, ZHANG Guo-zhu, et al. Development and application of heat conduction CPT probe[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 354–361. (in Chinese) doi: 10.11779/CJGE202002017
    [6]
    MO P Q, MA D Y, ZHU Q Y, et al. Interpretation of heating and cooling data from thermal cone penetration test using a 1D numerical model and a PSO algorithm[J]. Computers and Geotechnics, 2021, 130: 103908. doi: 10.1016/j.compgeo.2020.103908

Catalog

    Article views (120) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return