• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Hong-yong, ZHANG Chen, LI Qi-sheng, WANG Dong, SHEN Zhan-peng, FANG Ye, HE Qin-shu. Temperature transfer characteristics of clearance space in hypergravity field of geotechnical model box[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 83-86. DOI: 10.11779/CJGE2022S2018
Citation: CHEN Hong-yong, ZHANG Chen, LI Qi-sheng, WANG Dong, SHEN Zhan-peng, FANG Ye, HE Qin-shu. Temperature transfer characteristics of clearance space in hypergravity field of geotechnical model box[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 83-86. DOI: 10.11779/CJGE2022S2018

Temperature transfer characteristics of clearance space in hypergravity field of geotechnical model box

More Information
  • Received Date: December 07, 2022
  • Available Online: March 26, 2023
  • To study the temperature transfer laws of the air clearance space of the geotechnical model box in the hyper gravity field for design of the hyper gravity test platform tests in cold regions, the convection heat transfer model for clearance soil is established. Based on the Rayleigh-Benard convection model and the CFD numerical simulation, the effects of different clearance thicknesses and hypergravity acceleration on the temperature distribution on the soil surface and inside the clearance in the hypergravity environment are studied, and the phenomenon of the cause and development of the vortex ring in the convection heat transfer process is explained. The results show that the stable distribution of the vortex ring is directly related to the flow velocity, pressure, heat transfer coefficient of interface and temperature. The Nusselt number decreases with time under different clearances and overloads. In the start-up stage of the flow field, the Nusselt number changes greatly. In different gap states, the interfacial convective heat transfer decreases with the increase of the hypergravity acceleration. The influences of the hypergravity on the thermal convection in the slit are obtained, which can be used for the experimental design in the hypergravity field to consider the comprehensive influences of the slit scale and the hypergravity acceleration.
  • [1]
    石峰, 宁利中, 王芳, 等. 矩形腔体中Rayleigh-Benard对流结构的分析[J]. 西安理工大学学报, 2008, 24(4): 484–489. https://www.cnki.com.cn/Article/CJFDTOTAL-XALD200804022.htm

    SHI Feng, NING Li-zhong, WANG Fang, et al. An analysis of the structure of Rayleigh-benard convection in a rectangular channel[J]. Journal of Xi'an University of Technology, 2008, 24(4): 484–489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XALD200804022.htm
    [2]
    石峰, 宁利中, 王芳, 等. 具有不同来流形式的Rayleigh-Benard对流特性[J]. 水资源与水工程学报, 2008, 19(2): 56–59. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ200802017.htm

    SHI Feng, NING Li-zhong, WANG Fang, et al. Research on the dynamic characteristics of Rayleigh-Benard Convection in a rectangular channel[J]. Journal of Water Resources and Water Engineering, 2008, 19(2): 56–59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ200802017.htm
    [3]
    NING Li-zhong, QI Xin, HARADA Yoshifumi, et al. A periodically localized traveling wave state of binary fluid convection with horizontal flows[J]. Journal of Hydrodynamics, 2006(2): 199–205.
    [4]
    胡宇鹏, 李友荣. 长方体腔内关于密度极值温度对称加热-冷却时冷水瑞利-贝纳德对流稳定性[J]. 力学学报, 2015, 47(5): 722–730. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201505002.htm

    HU Yu-peng, LI You-rong. Numerical investigation on flow stability of Rayleigh-bénard convection of cold water in a rectangular cavity cooled and heated symmetrically relative to the temperature of density maximum[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 722–730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201505002.htm
    [5]
    张淑芸, 宁利中, 周倩, 等. 重力变调作用对Rayleigh-Benard对流的影响[J]. 水资源与水工程学报, 2011, 22(2): 40–43. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201102010.htm

    ZHANG Shu-yun, NING Li-zhong, ZHOU Qian, et al. Influence of gravity modulation on Rayleigh-Benard convection[J]. Journal of Water Resources and Water Engineering, 2011, 22(2): 40–43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201102010.htm
    [6]
    余荔, 宁利中, 魏炳乾, 等. Rayleigh-Benard对流及其在工程中的应用[J]. 水资源与水工程学报, 2008, 19(3): 52–54. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ200803014.htm

    YU Li, NING Li-zhong, WEI Bing-qian, et al. Rayleigh-Benard Convection and application in engineering[J]. Journal of Water Resources and Water Engineering, 2008, 19(3): 52–54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ200803014.htm
    [7]
    孙亮, 孙一峰, 马东军, 等. 高瑞利数下水平自然热对流的幂律关系[J]. 物理学报, 2007, 56(11): 6503–6507. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200711059.htm

    SUN Liang, SUN Yi-feng, MA Dong-jun, et al. Power law of horizontal convection at high Rayleigh numbers[J]. Acta Physica Sinica, 2007, 56(11): 6503–6507. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200711059.htm
    [8]
    张晨, 蔡正银, 黄英豪, 等. 输水渠道冻胀离心模拟试验[J]. 岩土工程学报, 2016, 38(1): 109–117. doi: 10.11779/CJGE201601011

    ZHANG Chen, CAI Zheng-yin, HUANG Ying-hao, et al. Centrifuge modelling of frost-heave of canals[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 109–117. (in Chinese) doi: 10.11779/CJGE201601011
  • Related Articles

    [1]HAN Xun, WANG Mo-pan, WU Ying-li. Numerical analysis of deformation and stability of bucket foundation revetment under backfill loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 88-91. DOI: 10.11779/CJGE2021S2021
    [2]WANG Long, ZHU Chang-gen, XU Ke-feng, YU Jian, LÜ Xi-lin. Numerical simulation of deformation control during excavation of deep foundation pit in soft soil with newly filled soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 84-87. DOI: 10.11779/CJGE2021S2020
    [3]HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053
    [4]XU Zhen, LAI Ying, MEI Guo-xiong. Numerical simulation of water-discharging pressure-relief technology on anti-floating of swimming pools[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 451-455.
    [5]KONG De-sen, ZHANG Qiu-hua, SHI Ming-chen. Numerical simulation of model tests on inclined retaining piles in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 408-411.
    [6]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [7]WEN Song-lin, REN Jia-li. Numerical simulation of non-conforming deformation feature between pile foundation and canal slope[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 178-183.
    [8]RUI Rui, XIA Yuanyou. Numerical simulation and comparison of pile-net composite foundation with pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 769-772.
    [9]GAO Qian, SONG Jianguo, YU Weijian, WANG Zhenghui. Design and numerical simulation of rock bolting and shotcrete for deep tunnels with high stress in Jinchuan Mine[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 279-284.
    [10]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return