Citation: | GAO Deng-hui, ZHAO Kuan-yao, JIN Song-li, XING Yi-chuan, CHU Wen-shu, FAN Ji-fei, ZHU Qiong. Method for calculating negative skin friction of pile foundation in large- thickness self-weight collapsible loess sits[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 231-235. DOI: 10.11779/CJGE2022S1041 |
[1] |
武小鹏. 基于试坑浸水试验的大厚度黄土湿陷及渗透特性研究[D]. 兰州: 兰州大学, 2016.
WU Xiao-peng. Study on the Characteristics of Collapse and Permeability of Large Thickness Loess Ground Based on Water Immersion Test[D]. Lanzhou: Lanzhou University, 2016. (in Chinese)
|
[2] |
刘争宏. 浸水条件下湿陷性黄土场地桩基特性研究[D]. 西安: 西安理工大学, 2008.
LIU Zheng-hong. Study on Characteristics of Piles in Collpsible Loess Sites Under Water Immersion Condition[D]. Xi'an: Xi'an University of Technology, 2008. (in Chinese)
|
[3] |
湿陷性黄土地区建筑标准: GB50025—2018[S]. 北京: 北京中国建筑工业出版社, 2018.
Construction Standards for Collapsible Loess Areas: GB50025—2018[S]. Beijing: China Architecture and Architecture Press, 2018. (in Chinese)
|
[4] |
陈正汉, 刘祖典. 黄土的湿陷变形机理[J]. 岩土工程学报, 1986, 8(2): 1–12. http://cge.nhri.cn/cn/article/id/8914
CHEN Zheng-han, LIU Zu-dian. Mechanism of collapsible deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(2): 1–12. (in Chinese) http://cge.nhri.cn/cn/article/id/8914
|
[5] |
姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65–74. http://cge.nhri.cn/cn/article/id/14490
YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65–74. (in Chinese) http://cge.nhri.cn/cn/article/id/14490
|
[6] |
钱鸿缙. 湿陷性黄土地基[M]. 北京: 中国建筑工业出版社, 1985: 90–101.
QIAN Hong-jin. Collapsible Loess Foundation[M]. Beijing: China Architecture & Building Press, 1985: 90–101. (in Chinese)
|
[7] |
高登辉, 邢义川, 郭敏霞, 等. 非饱和重塑黄土-混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156–164. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202001018.htm
GAO Deng-hui, XING Yi-chuan, GUO Min-xia, et al. Modified hyperbola model of interface between unsaturated remolded loess and concrete[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 156–164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202001018.htm
|
[8] |
COOKE R W, PRICE G, TARR K. Jacked piles in London Clay: a study of load transfer and settlement under working conditions[J]. Géotechnique, 1979, 29(2): 113–147. doi: 10.1680/geot.1979.29.2.113
|
[9] |
WONG K S, TEH C I. Negative skin friction on piles in layered soil deposits[J]. Journal of Geotechnical Engineering, 1995, 121(6): 457–465. doi: 10.1061/(ASCE)0733-9410(1995)121:6(457)
|
[10] |
刘祖典. 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997: 147–152.
LIU Zu-dian. Loess Mechanics and Engineering[M]. Xi'an: Shaanxi Science & Technology Press, 1997: 147–152. (in Chinese)
|
[11] |
ALONSO E E, JOSA A, LEDESMA A. Negative skin friction on piles: a simplified analysis and prediction procedure[J]. Géotechnique, 1984, 34(3): 341–357. doi: 10.1680/geot.1984.34.3.341
|
[12] |
SEED H B, REESE L C. The action of soft clay along friction piles[J]. Transactions of the American Society of Civil Engineers, 1957, 122(1): 731–754. doi: 10.1061/TACEAT.0007501
|