• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
PAN Bin, ZENG Zhao-tian, MO Hong-yan, LIU Zhao-qiang, CUI Zhe-qi. Temperature effects on shrinkage properties of swell-shrink soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 115-120. DOI: 10.11779/CJGE2022S1021
Citation: PAN Bin, ZENG Zhao-tian, MO Hong-yan, LIU Zhao-qiang, CUI Zhe-qi. Temperature effects on shrinkage properties of swell-shrink soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 115-120. DOI: 10.11779/CJGE2022S1021

Temperature effects on shrinkage properties of swell-shrink soils

More Information
  • Received Date: September 26, 2022
  • Available Online: February 06, 2023
  • The swell-shrink soils are prone to water loss, shrinkage and cracking because they contain more hydrophilic clay minerals, which have a significant impact on the engineering properties of soils. Taking two typical expandable soils (Guilin red clay and Nanning expansive soil) in Guangxi as the research object, the soil shrinkage tests are carried out at the temperature of 5℃~45℃. The effects of temperature on the shrinkage characteristics of the two types of expandable soils are compared and analyzed, and the mechanism of temperature effects on the shrinkage characteristics of the expandable soils is explained. The results show that: (1) The shrinkage characteristics of the two kinds of swelling and shrinking soils are significantly affected by the temperature. The shrinkage deformation of the samples increases first and then decreases with the increase of the temperature. There is a critical temperature 35℃. (2) The shrinkage deformation of the expansive soil is larger than that of the red clay, and the temperature effects are more significant. (3) The essence of the effects of temperature on the soil expansion and shrinkage are the change of soil microstructure and the change of water form in the soil. After reaching a certain temperature, the thermal expansion of soil particles and pore water caused by high temperature and the intensification of soil-water interaction make the soil skeleton have no sufficient time to transform into a compact state, which is the main reason for the decrease of shrinkage deformation.
  • [1]
    TANG C S, SHI B, LIU C, et al. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3/4): 204–217. https://www.sciencedirect.com/science/article/pii/S0013795208001531
    [2]
    MORRIS P H, GRAHAM J, WILLIAMS D J. Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263–277. doi: 10.1139/t92-030
    [3]
    姚海林, 郑少河, 陈守义. 考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2001, 23(5): 606–609. doi: 10.3321/j.issn:1000-4548.2001.05.019

    YAO Hai-lin, ZHENG Shao-he, CHEN Shou-yi. Analysis on the slope stability of expansive soils considering cracks and infiltration of rain[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 606–609. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.05.019
    [4]
    谈云志, 喻波, 刘晓玲, 等. 压实红黏土失水收缩过程的孔隙演化规律[J]. 岩土力学, 2015, 36(2): 369–375. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502012.htm

    TAN Yun-zhi, YU Bo, LIU Xiao-ling, et al. Pore size evolution of compacted laterite under desiccation shrinkage process effects[J]. Rock and Soil Mechanics, 2015, 36(2): 369–375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502012.htm
    [5]
    黄丁俊, 张添锋, 孙德安, 等. 干湿循环下压实红黏土胀缩特性试验研究[J]. 水文地质工程地质, 2015, 42(1): 79–86. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501015.htm

    HUANG Ding-jun, ZHANG Tian-feng, SUN De-an, et al. Experimental study of swell-shrinking behaviors of compacted laterite after wetting-drying cycles[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 79–86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501015.htm
    [6]
    王东伟, 唐朝生, 李胜杰, 等. 膨胀土干缩变形特性试验研究[J]. 高校地质学报, 2019, 25(5): 756–765. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201905013.htm

    WANG Dong-wei, TANG Chao-sheng, LI Sheng-jie, et al. Experimental study on volumetric shrinkage behavior of expansive soil[J]. Geological Journal of China Universities, 2019, 25(5): 756–765. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201905013.htm
    [7]
    曾秋鸾. 论广西红黏土的胀缩性能[J]. 广西地质, 2000, 13(3): 75–77.

    ZENG Qiu-luan. Discussion on expansion and contraction property of red clay of Guangxi[J]. Guangxi Geology, 2000, 13(3): 75–77. (in Chinese)
    [8]
    孔令伟, 罗鸿禧. 游离氧化铁形态转化对红粘土工程性质的影响[J]. 岩土力学, 1993, 14(4): 25–39. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199304004.htm

    KONG Lin-wei, LUO Hong-xi. Effect of the conversion in form of free iron oxide on the engineering property of the red clay[J]. Rock and Soil Mechanics, 1993, 14(4): 25–39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199304004.htm
    [9]
    谭罗荣, 孔令伟. 某类红黏土的基本特性与微观结构模型[J]. 岩土工程学报, 2001, 23(4): 458–462. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104017.htm

    TAN Luo-rong, KONG Ling-wei. Fundamental property and microstructure model of red clay[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 458–462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104017.htm
    [10]
    BRONSWIJK J J B. Modeling of water balance, cracking and subsidence of clay soils[J]. Journal of Hydrology, 1988, 97(3/4): 199–212. https://www.sciencedirect.com/science/article/pii/0022169488901151
    [11]
    邵玉娴, 施斌, 刘春, 等. 黏性土水理性质温度效应研究[J]. 岩土工程学报, 2011, 33(10): 1576–1582. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201110016.htm

    SHAO Yu-xian, SHI Bin, LIU Chun, et al. Temperature effect on hydro-physical properties of clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1576–1582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201110016.htm
    [12]
    CUISINIER O, LALOUI L. Fabric evolution during hydromechanical loading of a compacted silt[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(6): 483–499. doi: 10.1002/nag.348
    [13]
    TANG C S, SHI B, LIU C, et al. Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science, 2011, 52(1/2): 69–77. https://www.sciencedirect.com/science/article/pii/S0169131711000536
  • Related Articles

    [1]ZHANG Hao, ZHANG Chen-rong, SHI Zhen-hao, HUANG Mao-song, WANG Hao-ran, ZHANG Zhong-jie. Numerical simulation of excavation effects on tunneling with IGS small strain model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 72-75. DOI: 10.11779/CJGE2021S2017
    [2]CAO Wen-zhao, ZHENG Jun-jie, YAN Yong. Numerical simulation of composite foundation using pile-supported and geosynthetics-reinforced cushion with variable stiffness[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 83-86. DOI: 10.11779/CJGE2017S2021
    [3]SUN Li-qiang, REN Yu-xiao, YAN Shu-wang, YANG Ai-wu, HAN Sheng-zhang. Numerical simulation method for thermal-stress coupling in artificial freezing process[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 137-142. DOI: 10.11779/CJGE2015S2027
    [4]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [5]KONG De-sen, ZHANG Qiu-hua, SHI Ming-chen. Numerical simulation of model tests on inclined retaining piles in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 408-411.
    [6]Numerical simulation of 3D hydraulic fracturing process[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1875-1881.
    [7]Numerical simulation of a new damage rheology model for jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [8]ZHOU Jian, CUI Jihong, JIA Mincai, SHI D. Numerical simulation of cone penetration test by discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1604-1610.
    [9]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.
  • Cited by

    Periodical cited type(1)

    1. 赵飞涛. 基于锚固界面力学特性的拉压型锚杆承载特性研究. 长沙理工大学学报(自然科学版). 2025(02): 99-109 .

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (20) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return