• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Guo-yao, GUO Wei, ZHOU Feng-xi. Multi-field coupling analysis of water-heat-salt in composite unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 52-57. DOI: 10.11779/CJGE2022S1010
Citation: GAO Guo-yao, GUO Wei, ZHOU Feng-xi. Multi-field coupling analysis of water-heat-salt in composite unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 52-57. DOI: 10.11779/CJGE2022S1010

Multi-field coupling analysis of water-heat-salt in composite unsaturated soils

More Information
  • Received Date: September 27, 2022
  • Available Online: February 06, 2023
  • The multi-field coupling problem of water, heat and salt in the composite unsaturated soils composed of unsaturated clay and unsaturated sand is studied. Based on the mass and energy conservation equations for porous media, the temperature, pore pressure, salt content and their gradients are selected as the state variables, and the state equations for the multi-field coupling problem of water, heat and salt under unsteady conditions are established. After the Laplace transformation of the state equations, the frequency-domain solution for the strongly coupled nonlinear variable coefficient differential equations is solved, and the time-domain solution is obtained by the inversion method. The numerical solution is compared with the experimental results of the self-designed tests, and the accuracy of the established mathematical model is verified. The influences of the thickness and saturated permeability coefficient of the unsaturated sand at the bottom of the composite unsaturated soils on the distribution and migration law of water and salt fields in the whole unsaturated soils under the temperature gradient are analyzed, and then the test and theoretical basis are provided for the improvement of saline soils and the construction of engineering soil barriers.
  • [1]
    RESHETIN O L, ORLOV S Y. Theory of heat and moisture transfer in a capillary-porous body[J]. Technical Physics, 1998, 43(2): 263–264. doi: 10.1134/1.1258982
    [2]
    JIA Yong ying, WANG Zhi guo. The study of coupled transfer of heat, moisture and air in reservoir porous media[J]. Applied Mechanics and Materials, 2012, 271/272: 1195–1200. doi: 10.4028/www.scientific.net/AMM.271-272.1195
    [3]
    任荣. 非等温条件下土壤水热耦合迁移数值模拟研究[D]. 太原: 太原理工大学, 2018.

    REN Rong. Numerical Simulation of Coupled Soil Water and Heat Transfer under Non-Isothermal Conditions[D]. Taiyuan: Taiyuan University of Technology, 2018. (in Chinese)
    [4]
    DEB S K, SHUKLA M K, SHARMA P, et al. Coupled liquid water, water vapor, and heat transport simulations in an unsaturated zone of a sandy loam field[J]. Soil Science, 2011, 176(8): 387–398. doi: 10.1097/SS.0b013e318221f132
    [5]
    安然. 地下水流与气流、热流的典型耦合问题及解耦条件研究[D]. 北京: 中国地质大学(北京), 2015.

    AN Ran. Research on Typical Coupling Problems and the Decoupling Conditions for Groundwater Flow Linked with Air Flow and Thermal Flow[D]. Beijing: China University of Geosciences, 2015. (in Chinese)
    [6]
    姜建梅. 基于滨海平原区浅层地下水对土壤水汽热耦合运移规律的影响研究[D]. 天津: 天津大学, 2015.

    JIANG Jian-mei. The Effect of Shallow Groundwater on Coupled Soil Water Vapor and Heat Transport in Coastal Plain[D]. Tianjin: Tianjin University, 2015. (in Chinese)
    [7]
    JAHANGIR M H, SADRNEJAD S A. A new coupled heat, moisture and air transfer model in unsaturated soil[J]. Journal of Mechanical Science and Technology, 2012, 26(11): 3661–3672. doi: 10.1007/s12206-012-0839-z
    [8]
    HE Z Y, ZHANG S, TENG J D, et al. A coupled model for liquid water-vapor-heat migration in freezing soils[J]. Cold Regions Science and Technology, 2018, 148: 22–28. doi: 10.1016/j.coldregions.2018.01.003
    [9]
    CLEALL P J, SINGH R M, THOMAS H R. Vapour transfer in unsaturated compacted bentonite[J]. Géotechnique, 2013, 63(11): 957–964. doi: 10.1680/geot.12.P.147
    [10]
    HERNÁNDEZ-LÓPEZ M F, GIRONÁS J, BRAUD I, et al. Assessment of evaporation and water fluxes in a column of dry saline soil subject to different water table levels[J]. Hydrological Processes, 2014, 28(10): 3655–3669. doi: 10.1002/hyp.9912
    [11]
    CHEN Y P, SHI M H, LI X C. Experimental investigation on heat, moisture and salt transfer in soil[J]. International Communications in Heat and Mass Transfer, 2006, 33(9): 1122–1129. doi: 10.1016/j.icheatmasstransfer.2006.06.013
    [12]
    周凤玺, 高国耀. 非饱和土中热-湿-盐耦合作用的稳态分析[J]. 岩土力学, 2019, 40(6): 2050–2058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906004.htm

    ZHOU Feng-xi, GAO Guo-yao. Steady-state analysis of the heat-moisture-salt coupling for unsaturated soil[J]. Rock and Soil Mechanics, 2019, 40(6): 2050–2058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906004.htm
    [13]
    周凤玺, 高国耀. 非饱和土中热湿盐多场耦合过程分析[J]. 岩土工程学报, 2019, 41(5): 813–820. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905004.htm

    ZHOU Feng-xi, GAO Guo-yao. Multi-field coupling process of heat- moisture-salt in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 813–820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905004.htm
    [14]
    PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222. doi: 10.1029/TR038i002p00222
    [15]
    WANG W Q, RUTQVIST J, GÖRKE U J, et al. Non-isothermal flow in low permeable porous media: a comparison of Richards' and two-phase flow approaches[J]. Environmental Earth Sciences, 2011, 62(6): 1197–1207. doi: 10.1007/s12665-010-0608-1
    [16]
    NASSAR I, HORTON R. Heat, water, and solution transfer in unsaturated porous media: I: theory development and transport coefficient evaluation[J]. Transport in Porous Media, 1997, 27: 17–38. doi: 10.1023/A:1006583918576
    [17]
    肖泽岸, 赖远明, 尤哲敏. 单向冻结过程中NaCl盐渍土水盐运移及变形机理研究[J]. 岩土工程学报, 2017, 39(11): 1992–2001. doi: 10.11779/CJGE201711006

    XIAO Ze-an, LAI Yuan-ming, YOU Zhe-min. Water and salt migration and deformation mechanism of sodium chloridesoil during unidirectional freezing process[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 1992–2001. (in Chinese) doi: 10.11779/CJGE201711006
    [18]
    陈世平, 李毅, 高金芳. 覆膜开孔入渗-蒸发条件下夹砂层土壤水、盐、热变化规律[J]. 中国农村水利水电, 2011(11): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201111014.htm

    CHEN Shi-ping, LI Yi, GAO Jin-fang. The movement of soil water, solute and heat for saline-alkali soil with sand layers under infiltration and plastic film hole evaporation[J]. China Rural Water and Hydropower, 2011(11): 47–51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201111014.htm
  • Related Articles

    [1]ZHOU Feng-xi, GAO Guo-yao. Multi-field coupling process of heat-moisture-salt in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 813-820. DOI: 10.11779/CJGE201905003
    [2]LI Pei-xian, WAN Hao-ming, XU Yue, YUAN Xue-qi, ZHAO Yin-peng. Parameter inversion of probability integration method using surface movement vector[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 767-776. DOI: 10.11779/CJGE201804022
    [3]WANG Chuan-wu, LI Shu-cai, NIE Li-chao, LIU Bin, GUO Qian, REN Yu-xiao, LIU Hai-dong. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
    [4]WANG Chuan-wu, LI Shu-cai, LIU Bin, NIE Li-chao, ZHANG Feng-kai, SONG Jie, GUO Qian, REN Yu-xiao. 3D constrained electrical resistivity inversion method based on reference model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1685-1694. DOI: 10.11779/CJGE201609016
    [5]LIU Zong-hui, WU Heng, ZHOU Dong, WEI Hong-yao. Application of spectrum inversion method in GPR signal processing for tunnel lining detection[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 711-717. DOI: 10.11779/CJGE201504017
    [6]LIU Bin, LI Shu-cai, NIE Li-chao, WANG Jing, SONG Jie, LIU Zheng-yu. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876.
    [7]WANG Kui-hua, WANG Ning, LIU Kai, WU Wen-bing. Longitudinal vibration of piles in 3D axisymmetric soil based on fictitious soil pile method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 885-889.
    [8]LU Yanmei, CHEN Jiansheng, DONG Haizhou, CHEN Liang. Laplace solution for heat transfer model of dam leakage[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 274-278.
    [9]A polynomial regressive inverse method to determine rheologic parameters of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 365-367.
    [10]Li Ning, Li Yonggang, Zhang Ping. A simulating inversion method for an opening in discrete rock masses[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 170-173.
  • Cited by

    Periodical cited type(15)

    1. 杨舒涵,漆天奇,刘嘉英. 堆石料宏细观力学特性离散元分析. 人民长江. 2024(02): 203-210 .
    2. LI Shuai,GU Tianfeng,WANG Jiading,WANG Fei,LI Pu. Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance. Journal of Mountain Science. 2024(07): 2283-2304 .
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
    4. 张江浩,冀鸿兰,杨震,李志军,刘晓民. 冻融循环下黄河堤岸砂质壤土宏细观破坏过程. 河海大学学报(自然科学版). 2024(06): 69-80 .
    5. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 .
    6. 栗培龙,宿金菲,孙胜飞,王霄,马云飞. 多级矿料-沥青体系的颗粒特性、界面效应及迁移行为研究进展. 中国公路学报. 2023(01): 1-15 .
    7. 王伟,张志义,赵博. 煤矿井下风积沙箱式充填体侧向约束机理数值研究. 新疆大学学报(自然科学版)(中英文). 2023(03): 367-372 .
    8. 肖浩波,漆天奇,杨舒涵,周伟,刘嘉英. 椭球颗粒体系宏、细观特性的3维离散元分析. 工程科学与技术. 2023(06): 78-86 .
    9. 张革,曹玲,王成汤. 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用. 岩土力学. 2023(S1): 645-654 .
    10. 郑虎,牛文清,毛无卫,黄雨. 颗粒材料双轴压缩试验的光弹测试. 同济大学学报(自然科学版). 2023(11): 1719-1724 .
    11. 王怡舒,刘斯宏,沈超敏,陈静涛. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响. 岩石力学与工程学报. 2022(02): 412-422 .
    12. 雷云,刘源,徐同桐,何子苗. 粒间摩擦和层厚比对二维分层颗粒系统底部响应的影响. 科学技术与工程. 2022(07): 2585-2591 .
    13. 刘嘉英,周伟,姬翔,魏纲,袁思莹,李欣骏. 基于细观拓扑结构演化的颗粒材料剪胀性分析. 力学学报. 2022(03): 707-718 .
    14. 蒋明杰,栗书亚,吉恩跃,张小勇,朱俊高. 粗粒土大型静止侧压力系数测定试验的颗粒流模拟. 科学技术与工程. 2021(25): 10867-10872 .
    15. 崔溦,魏杰,王超,王枭华,张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报. 2021(12): 2230-2239 . 本站查看

    Other cited types(14)

Catalog

    Article views (220) PDF downloads (40) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return