• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Mingkai, KONG Desen, TENG Sen, DENG Meixu. A fractal model for predicting irreducible fluid saturation of two-phase flows in rock media under stress[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 871-879. DOI: 10.11779/CJGE20221474
Citation: ZHAO Mingkai, KONG Desen, TENG Sen, DENG Meixu. A fractal model for predicting irreducible fluid saturation of two-phase flows in rock media under stress[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 871-879. DOI: 10.11779/CJGE20221474

A fractal model for predicting irreducible fluid saturation of two-phase flows in rock media under stress

More Information
  • Received Date: November 27, 2022
  • Available Online: April 17, 2023
  • The irreducible fluid saturation is a significant parameter for predicting the relative permeability in two-phase flows and plays an important role in engineering fields such as oil and gas reservoir development. To this end, the rock is equated as an aggregate of solid clusters based on the fractal theory and capillary model, and different fractal dimensions are introduced to characterize the scale distribution of solid clusters and the tortuosity of flow paths, respectively. Then, a model for predicting the irreducible fluid saturation under stress is proposed and validated using the experimental data. Finally, the stress sensitivity of irreducible fluid saturation and the influence mechanism of each parameter in the model are analyzed. The results show that the irreducible fluid saturation is closely related to the fluid viscosity, pore structure parameters, pressure drop gradient and elastic modulus. The effective stress increases the irreducible fluid saturation. The fractal dimensions can represent the thickness of the fluid film formed by the irreducible fluid and the actual flow length, which quantifies the influences of the pore structure characteristics on the irreducible fluid saturation.
  • [1]
    SU Y L, FU J G, LI L, et al. A new model for predicting irreducible water saturation in tight gas reservoirs[J]. Petroleum Science, 2020, 17(4): 1087-1100. doi: 10.1007/s12182-020-00429-x
    [2]
    张鹏伟, 胡黎明, MEEGODA J N, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报, 2020, 42(1): 37-45. doi: 10.11779/CJGE202001004

    ZHANG Pengwei, HU Liming, MEEGODA J N, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. (in Chinese) doi: 10.11779/CJGE202001004
    [3]
    LEI G, MO S Y, DONG Z Z, et al. Theoretical and experimental study on stress-dependency of oil-water relative permeability in fractal porous media[J]. Fractals, 2018, 26(2): 1840010. doi: 10.1142/S0218348X18400108
    [4]
    张冲, 张超谟, 张占松, 等. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2): 352-358. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602019.htm

    ZHANG Chong, ZHANG Chaomo, ZHANG Zhansong, et al. Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J]. Natural Gas Geoscience, 2016, 27(2): 352-358. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602019.htm
    [5]
    LIU G F, XIE S T, TIAN W, et al. Effect of pore-throat structure on gas-water seepage behaviour in a tight sandstone gas reservoir[J]. Fuel, 2022, 310: 121901. doi: 10.1016/j.fuel.2021.121901
    [6]
    李海波, 郭和坤, 李海舰, 等. 致密储层束缚水膜厚度分析[J]. 天然气地球科学, 2015, 26(1): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201501024.htm

    LI Haibo, GUO Hekun, LI Haijian, et al. Thickness analysis of bound water film in tight reservoir[J]. Natural Gas Geoscience, 2015, 26(1): 186-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201501024.htm
    [7]
    ADENUTSI C D, LI Z P, XU Z C, et al. Influence of net confining stress on NMR T2 distribution and two-phase relative permeability[J]. Journal of Petroleum Science and Engineering, 2019, 178: 766-777. doi: 10.1016/j.petrol.2019.03.083
    [8]
    HUO D, BENSON S M. Experimental investigation of stress-dependency of relative permeability in rock fractures[J]. Transport in Porous Media, 2016, 113(3): 567-590. doi: 10.1007/s11242-016-0713-z
    [9]
    赵明凯, 孔德森. 考虑裂隙面粗糙度和开度分形维数的岩石裂隙渗流特性研究[J]. 岩石力学与工程学报, 2022, 41(10): 1993-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210005.htm

    ZHAO Mingkai, KONG Desen. Study on seepage characteristics of rock fractures considering fracture surface roughness and opening fractal dimension[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 1993-2002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210005.htm
    [10]
    黄献文, 姜朋明, 周爱兆, 等. 基于颗粒分形特征的土体渗透特性预测模型[J]. 岩土工程学报, 2023, 45(9): 1907-1915. doi: 10.11779/CJGE20220772

    HUANG Xianwen, JIANG Pingming, ZHOU Aizhao, et al. Prediction model for soil permeability based on fractal characteristics of particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1907-1915. (in Chinese) doi: 10.11779/CJGE20220772
    [11]
    PENG L, ZHANG C, MA H L, et al. Estimating irreducible water saturation and permeability of sandstones from nuclear magnetic resonance measurements by fractal analysis[J]. Marine and Petroleum Geology, 2019, 110: 565-574. doi: 10.1016/j.marpetgeo.2019.07.037
    [12]
    XU P, QIU S X, YU B M, et al. Prediction of relative permeability in unsaturated porous media with a fractal approach[J]. International Journal of Heat and Mass Transfer, 2013, 64: 829-837. doi: 10.1016/j.ijheatmasstransfer.2013.05.003
    [13]
    孔德森, 赵明凯, 时健, 等. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究[J]. 岩土工程学报, 2023, 45(7): 1421-1429. doi: 10.11779/CJGE20220463

    KONG Desen, ZHAO Mingkai, SHI Jian, et al. A model for predicting gas-water relative permeability of rock media based onfractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. (in Chinese) doi: 10.11779/CJGE20220463
    [14]
    MO S Y, HE S L, LEI G, et al. Effect of the drawdown pressure on the relative permeability in tight gas: A theoretical and experimental study[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 264-271. doi: 10.1016/j.jngse.2015.03.034
    [15]
    TAN X H, LI X P, LIU J Y, et al. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media[J]. Physics Letters A, 2015, 379(39): 2458-2465. doi: 10.1016/j.physleta.2015.06.025
    [16]
    KRUHL J H. Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy[J]. Journal of Structural Geology, 2013, 46: 2-21. doi: 10.1016/j.jsg.2012.10.002
    [17]
    赵明凯, 孔德森, 关盛杰, 等. 岩体裂隙渗透率应力敏感性分形研究[J]. 地下空间与工程学报, 2022, 18(6): 1799-1804, 1833. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202206006.htm

    ZHAO Mingkai, KONG Desen, GUAN Shengjie, et al. Fractal study on stress sensitivity of fracture permeability[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(6): 1799-1804, 1833. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202206006.htm
    [18]
    金毅, 王俏俏, 董佳斌, 等. 颗粒填充型分形孔隙结构复杂组构表征[J]. 岩石力学与工程学报, 2022, 41(6): 1160-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202206008.htm

    JIN Yi, WANG Qiaoqiao, DONG Jiabin, et al. Characterization of the complexity assembly of fractal bed-packing porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1160-1171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202206008.htm
    [19]
    YU B M. Analysis of flow in fractal porous media[J]. Applied Mechanics Reviews, 2008, 61(5): 050801. doi: 10.1115/1.2955849
    [20]
    YU B M, LI J. A fractal model for the transverse thermal dispersion conductivity in porous media[J]. Chinese Physics Letters, 2004(1): 117-120.
    [21]
    TIAN X F, CHENG L S, YAN Y Q, et al. An improved solution to estimate relative permeability in tight oil reservoirs[J]. Journal of Petroleum Exploration and Production Technology, 2015, 5(3): 305-314. doi: 10.1007/s13202-014-0129-7
    [22]
    HUANG S, YAO Y D, ZHANG S, et al. A fractal model for oil transport in tight porous media[J]. Transport in Porous Media, 2018, 121(3): 725-739. doi: 10.1007/s11242-017-0982-1
    [23]
    CHENG Y, ZHANG C, ZHU L q. A fractal irreducible water saturation model for capillary tubes and its application in tight gas reservoir[J]. Journal of Petroleum Science and Engineering, 2017, 159: 731-739. doi: 10.1016/j.petrol.2017.09.079
  • Related Articles

    [1]HUANG Man, WU Yuewei, LIU Dan, HONG Chenjie, DU Shigui, LUO Zhanyou. Experimental study on size effect of shear strength of joints with different infill ratios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1820-1830. DOI: 10.11779/CJGE20230549
    [2]LIU Qi-fei, ZHUANG Hai-yang, CHEN Jia, WU Qi, CHEN Guo-xing. Tests on shear strength and failure mode of rubber particle-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895. DOI: 10.11779/CJGE202110015
    [3]WANG Yi-bing, WU Mei-su, ZHOU Cheng. Direct shear tests and numerical simulation on slope soils reinforced by composite roots[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 177-182. DOI: 10.11779/CJGE2020S1035
    [4]ZHU Yan-peng, MA Tao, YANG Xiao-hui, YANG Kui-bin, WANG Hai-ming. Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 87-92. DOI: 10.11779/CJGE2018S1014
    [5]YANG Ji-hong, DONG Jin-yu, HUANG Zhi-quan, ZHENG Zhu-guang, QI Dan. Large-scale direct shear tests on accumulation body with different stone contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 161-166. DOI: 10.11779/CJGE2016S2026
    [6]HUANG Bo, WANG Qing-jing, LING Dao-sheng, DING Hao, CHEN Yun-min. Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319.
    [7]ZHU Chun-peng, LIU Han-long, SHEN Yang. Laboratory tests on shear strength properties of soil polluted by acid and alkali[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1146-1152.
    [8]Tests on shear strength behavior and envelop of double lines of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [9]TANG Liexian, TANG Chunan, TANG Shibin, CUI Yinghao, SONG Li. Physical experiment and numerical simulation on effect of soundless cracking agent[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 437-441.
    [10]LIU Sihong, XIAO Gongyuan, YANG Jianzhou, WU Guangyin. New in-situ direct shear tests on rockfill materials at Yixing Pumped Storage Power Station Project[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 772-776.
  • Cited by

    Periodical cited type(3)

    1. 李丹丹,张兴旺. 大直径钢管斜桩技术在内河航道工程中的优化与分析. 水利科技与经济. 2025(01): 133-136 .
    2. 罗强,熊诗杰,王腾飞,黄豫,张良. 平动位移下衡重式挡墙背土体破裂面特征及土压力分析. 东南大学学报(自然科学版). 2022(03): 547-556 .
    3. 蒋东晟. 基于Midas GTS与FLUENT的堤防挡墙格栅设计参数对比优化探究. 广东水利水电. 2022(07): 18-23 .

    Other cited types(3)

Catalog

    Article views (384) PDF downloads (74) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return