• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Xingzhou, BAI Yani, CHEN Lili, MA Bin, WANG Wenrui, GONG Sheng. Experimental study on mechanical properties of excavated unloading rock mass under high osmotic pressure and cyclic loading and unloading environments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 737-745. DOI: 10.11779/CJGE20221470
Citation: CHEN Xingzhou, BAI Yani, CHEN Lili, MA Bin, WANG Wenrui, GONG Sheng. Experimental study on mechanical properties of excavated unloading rock mass under high osmotic pressure and cyclic loading and unloading environments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 737-745. DOI: 10.11779/CJGE20221470

Experimental study on mechanical properties of excavated unloading rock mass under high osmotic pressure and cyclic loading and unloading environments

More Information
  • Received Date: November 27, 2022
  • Available Online: April 23, 2023
  • Exploring the evolution laws of mechanical properties of deeply excavated unloading rock mass under high osmotic pressure and cyclic loading and unloading environments is conducive to the realease of deformation and failure mechanism under combined loading. By distinguishing the excavation disturbance intensity from the magnitude of osmotic pressure, the triaxial loading and unloading tests are conducted, and unloading rock mass subjected to excavation disturbance under high osmotic pressure environments are conducted considering the combined action of specific pore pressure and cyclic loading. The results show that: (1) The magnitude of unloading directly affects the deformation laws and the failure strength of rock samples and the pore water pressure promotes their tensile and shear failure during the cyclic loading and unloading. (2) The increase of pore pressure intensifies the ductile deformation and strength attenuation of the unloading rock samples with the same magnitude during the cyclic loading and unloading process, and the axial, circumferential and volumetric deformation curves of the unloading rock samples fluctuate at the pore pressure of 2 MPa. (3) With the increase of pore pressure, the circumferential deformation of the rock samples at the unloading magnitude of 30% increases first and then decreases, while that at the unloading magnitude of 60% decreases first and then increases. (4) With the increase of unloading magnitude and pore pressure, the dip angle of the end fracture gradually increases when the rock sample is damaged, and the tensile and shear fracture surface generated along the axial direction of the rock sample becomes more prominent.
  • [1]
    GUO H, JI M, ZHANG Y, et al. Study of mechanical property of rock under uniaxial cyclic loading and unloading[J]. Advances in Civil Engineering, 2018: 1-6.
    [2]
    卢高明, 李元辉, 张希巍, 等. 周期荷载作用下黄砂岩疲劳破坏变形特性试验研究[J]. 岩土工程学报, 2015, 37(10): 1886-1892. doi: 10.11779/CJGE201510017

    LU Gaoming, LI Yuanhui, ZHANG Xiwei, et al. Fatigue deformation characteristics of yellow sandstone under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1886-1892. (in Chinese) doi: 10.11779/CJGE201510017
    [3]
    MENG Q, ZHANG M, HAN L, et al. Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 1-14.
    [4]
    MUNOZ H, TAHERI A. Postpeak deformability parameters of localized and nonlocalized damage zones of rocks under cyclic loading[J]. Geotechnical Testing Journal, 2019, 42(6): 1663-1684. doi: 10.1520/GTJ20170266
    [5]
    ZHANG C, WANG Y, RUAN H, et al. The strain characteristics and corresponding model of rock materials under uniaxial cyclic load/unload compression and their deformation and fatigue damage analysis[J]. Archive of Applied Mechanics, 2021, 91(6): 2481-2496. doi: 10.1007/s00419-021-01899-0
    [6]
    MENG Q B, LIU J F, REN L, et al. Experimental study on rock strength and deformation characteristics under triaxial cyclic loading and unloading conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 777-797. doi: 10.1007/s00603-020-02289-8
    [7]
    CHEN J, DU C, JIANG D, et al. The mechanical properties of rock salt under cyclic loading-unloading experiments[J]. Geomechanics and Engineering, 2016, 10(3): 325-334. doi: 10.12989/gae.2016.10.3.325
    [8]
    蔡燕燕, 唐欣, 林立华, 等. 疲劳荷载下大理岩累积损伤过程的应变速率响应[J]. 岩土工程学报, 2020, 42(5): 827-836. doi: 10.11779/CJGE202005004

    CAI Yanyan, TANG Xin, LIN Lihua, et al. Strain rate response of damage accumulation of marble under fatigue loading[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 827-836. (in Chinese) doi: 10.11779/CJGE202005004
    [9]
    赵闯, 武科, 李术才, 等. 循环荷载作用下岩石损伤变形与能量特征分析[J]. 岩土工程学报, 2013, 35(5): 890-896. http://cge.nhri.cn/cn/article/id/15058

    ZHAO Chuang, WU Ke, LI Shucai, et al. Energy characteristics and damage deformation of rock subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 890-896. (in Chinese) http://cge.nhri.cn/cn/article/id/15058
    [10]
    WANG Y, FENG W K, HU R L, et al. Fracture evolution and energy characteristics during marble failure under triaxial fatigue cyclic and confining pressure unloading (FC-CPU) conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 799-818. doi: 10.1007/s00603-020-02299-6
    [11]
    周志华, 曹平, 叶洲元, 等. 单轴循环载荷与渗透水压下预应力裂隙岩石破坏试验研究[J]. 采矿与安全工程学报, 2014, 31(2): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201402021.htm

    ZHOU Zhihua, CAO Ping, YE Zhouyuan, et al. Failure characteristics of prestress fractured rock under uniaxial cyclic loading and seepage water pressure[J]. Journal of Mining and Safety Engineering, 2014, 31(2): 292-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201402021.htm
    [12]
    魏元龙, 杨春和, 郭印同, 等. 三轴循环荷载下页岩变形及破坏特征试验研究[J]. 岩土工程学报, 2015, 37(12): 2262-2271. doi: 10.11779/CJGE201512016

    WEI Yuanlong, YANG Chunhe, GUO Yintong, et al. Experimental research on deformation and fracture characteristics of shale under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2262-2271. (in Chinese) doi: 10.11779/CJGE201512016
    [13]
    王瑞红, 李建林, 蒋昱州, 等. 循环加卸载对岩体残余强度影响的试验研究[J]. 岩石力学与工程学报, 2010, 29(10): 2103-2109. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010022.htm

    WANG Ruihong, LI Jianlin, JIANG Yuzhou, et al. Experimental research on influence of cyclic loading and unloading on rock mass residual strength[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2103-2109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010022.htm
  • Related Articles

    [1]FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
    [2]MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021
    [3]ZHANG Wen-jie, CHEN Lu, YAN Hong-gang. Water retention characteristics and pore size distribution of landfilled municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1491-1497. DOI: 10.11779/CJGE201808015
    [4]XU Jie, ZHAO Wen-bo, CHEN Yong-hui, LU Jia-nan. Experimental study on initial shear modulus and pore-size distribution of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 227-231. DOI: 10.11779/CJGE2017S1045
    [5]LIU Yang, WANG Cheng-lin, ZHANG Duo. Distribution and evolution of pore structure in 2D granular materials under biaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 494-503. DOI: 10.11779/CJGE201503013
    [6]SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020
    [7]HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462.
    [8]LIANG Yue, CHENJian-sheng, CHEN Liang. Numerical simulation model for pore flows and distribution of their velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104-1109.
    [9]LI Fuqiang, WANG Zhao, CHEN Lun, XUE Yongping. Digital image analysis to determine pore size distribution of filtration materials[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 857-860.
    [10]CHANG Dave Ta-tech, TING Yuan-hao, CHENG Chia-ling. Study on variation of pore structure of geotextiles effected by filtration with soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 500-504.
  • Cited by

    Periodical cited type(7)

    1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 .
    2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 .
    3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 .
    4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 .
    5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 .
    6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 .
    7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 .

    Other cited types(14)

Catalog

    Article views (468) PDF downloads (125) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return