Citation: | LUO Yasheng, ZHAO Chengbin, SUN Zhe, FAN Quan, NIU Yuxin, LI Bin. Visco-elastoplastic constitutive model for remolded loess based on infinitesimalization of plastic elements[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 624-631. DOI: 10.11779/CJGE20221452 |
[1] |
TOSHIHISA A, FUSAO O, MASASHI K. An Elasto- viscoplastic constitutive model with strain-softening for soft sedimentary rocks[J]. Soils and Foundations, 2005, 45(2): 125-133 doi: 10.3208/sandf.45.2_125
|
[2] |
胡再强, 王凯, 李宏儒, 等. 人工制备遗址土非线性蠕变本构模型研究[J]. 岩土工程学报, 2021, 43(增刊1): 13-18. doi: 10.11779/CJGE2021S1003
HU Zaiqiang, WANG Kai, LI Hongru, et al. Nonlinear creep constitutive model for artificially prepared site soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 13-18(in Chinese) doi: 10.11779/CJGE2021S1003
|
[3] |
邓会元, 戴国亮, 邱国阳, 等. 杭州湾淤泥质粉质黏土排水蠕变试验及元件蠕变模型[J]. 东南大学学报(自然科学版), 2021, 51(2): 318-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202102019.htm
DENG Huiyuan, DAI Guoliang, QIU Guoyang, et al. Drained creep test and component creep model of soft silty clay in Hangzhou Bay[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(2): 318-324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202102019.htm
|
[4] |
徐辉, 王靖涛, 张光永. 基于细观力学分析的砂土弹塑性本构模型[J]. 固体力学学报, 2006, 27(3): 249-254. doi: 10.3969/j.issn.0254-7805.2006.03.006
XU Hui, WANG Jingtao, ZHANG Guangyong. An elastic-plastic constitutive model for sand based on micromechanics method[J]. Acta Mechanica Solida Sinica, 2006, 27(3): 249-254. (in Chinese) doi: 10.3969/j.issn.0254-7805.2006.03.006
|
[5] |
姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832. http://cge.nhri.cn/cn/article/id/14436
YAO Yangping, YU Yani. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832. (in Chinese) http://cge.nhri.cn/cn/article/id/14436
|
[6] |
姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. doi: 10.3321/j.issn:1000-6915.2009.10.023
YAO Yangping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023
|
[7] |
何冠, 姚仰平. 统一硬化模型与下加载面模型的理论关系[J]. 岩土力学, 2022, 43(增刊2): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2002.htm
HE Guan, YAO Yangping. Theoretical relation between unified hardening model and sub-loading surface model[J]. Rock and Soil Mechanics, 2022, 43(S2): 11-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2002.htm
|
[8] |
路德春, 金辰逸, 梁靖宇, 等. 考虑状态相关的砂土非正交弹塑性本构模型[J]. 岩土工程学报, 2023, 45(2): 221-231. doi: 10.11779/CJGE20211457
LU Dechun, JIN Chenyi, LIANG Jingyu, et al. State-dependent non-orthogonal elastoplastic constitutive model for sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 221-231. (in Chinese) doi: 10.11779/CJGE20211457
|
[9] |
AMOROSI A, KAVVADAS M. A. constitutive model for structured soils[J]. Géotechnique, 2000, 50(3): 263-273. doi: 10.1680/geot.2000.50.3.263
|
[10] |
谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 2004.
XIE Dingyi. Soil Dynamics[M]. Xi'an: Xi'an Jiaotong University Press, 2004. (in Chinese)
|
[11] |
穆锐, 黄质宏, 浦少云, 等. 循环荷载下原状红黏土的累积变形特征及动本构关系研究[J]. 岩土力学, 2020, 41(增刊2): 1-10.
MU Rui, HUANG Zhihong, PU Shaoyun, et al. Accumulated deformation characteristics of undisturbed red clay under cyclic loading and dynamic constitutive relationship[J]. Rock and Soil Mechanics, 2020, 41(S2): 1-10. (in Chinese)
|
[12] |
崔凯, 李永奎. 川西崩坡积混合土循环荷载下非饱和动本构模型[J]. 岩土力学, 2017, 38(8): 2157-2166. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708002.htm
CUI Kai, LI Yongkui. Study on constitutive model of unsaturated Chuanxi talus mixed soil under cyclic loading[J]. Rock and Soil Mechanics, 2017, 38(8): 2157-2166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708002.htm
|
[13] |
魏尧, 杨更社, 申艳军, 等. 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008015.htm
WEI Yao, YANG Gengshe, SHEN Yanjun, et al. Creep test and constitutive model of Cretaceous saturated frozen sandstone[J]. Rock and Soil Mechanics, 2020, 41(8): 2636-2646. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008015.htm
|
[14] |
LIAN B Q, WANG X G, ZHAN H B, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589. doi: 10.1016/j.enggeo.2022.106589
|
[15] |
MANUELA C S, CRISTELO N, ROUAINIA M, et al. Constitutive behaviour of a clay stabilised with alkali-activated cement based on blast furnace slag[J]. Sustainability, 2022, 14(21): 13736-13757 doi: 10.3390/su142113736
|
[16] |
LI Z X, WANG J D, YANG S, et al. Characteristics of microstructural changes of malan loess in Yan'an area during creep test[J]. Water, 2022, 14(3): 438-460 doi: 10.3390/w14030438
|
[17] |
黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983.
HUANG Wenxi. Engineering Properties of Soil[M]. Beijing: Water Resources and Hydropower Press, 1983. (in Chinese)
|
[1] | ZHANG Siyu, ZHANG Yonggan, LU Yang, LIU Sihong. Experimental study on freezing deformation characteristics of unsaturated expansive soils considering cyclic freeze-thaw and initial anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1004-1013. DOI: 10.11779/CJGE20231279 |
[2] | WANG Yapeng, LI Guoyu, CHEN Dun, MA Wei, ZHANG Xuan. Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017 |
[3] | LI Ya-jie, WANG Xu-dong, WANG Ya-ping, CHANG Yin-sheng. Deformation characteristics of sand in confined aquifer under cyclic pumping-recharging groundwater[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1943-1949. DOI: 10.11779/CJGE201810023 |
[4] | YU Wei-jian, WANG Wei-jun, WEN Guo-hua, ZHANG Nong, WU Hai, ZHANG Yong-qing. Deformation mechanism and control technology of coal roadway under deep well and compound roof[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1501-1508. |
[5] | QIAO Ya-fei, DING Wen-qi, WANG Jun, WANG Chun-bo. Deformation characteristics of deep excavations for metro stations in Wuxi[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 761-766. |
[6] | WU Hong-gang, MA Hui-min, BAO Gui-yu. Deformation mechanism of tunnel-slope system in shallow tunnels under unsymmetrical pressure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 509-514. |
[7] | Deformation mechanism of secondary consolidation of natural clays[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7). |
[8] | Strength and deformation characteristics and critical state of rock fill[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2). |
[9] | LI Jianlin, LIU Jie, WANG Lehua. Studies on deformation mechanism and rock mass stability of high slopes of Geheyan Power Station under multiple factors[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1289-1295. |
[10] | Miao Tiande, Liu Zhongyu, Ren Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387. |