• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LUO Yasheng, ZHAO Chengbin, SUN Zhe, FAN Quan, NIU Yuxin, LI Bin. Visco-elastoplastic constitutive model for remolded loess based on infinitesimalization of plastic elements[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 624-631. DOI: 10.11779/CJGE20221452
Citation: LUO Yasheng, ZHAO Chengbin, SUN Zhe, FAN Quan, NIU Yuxin, LI Bin. Visco-elastoplastic constitutive model for remolded loess based on infinitesimalization of plastic elements[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 624-631. DOI: 10.11779/CJGE20221452

Visco-elastoplastic constitutive model for remolded loess based on infinitesimalization of plastic elements

More Information
  • Received Date: November 22, 2022
  • Available Online: June 05, 2023
  • Based on the theory of infinitesimalization of plastic elements and infinite series, the visco-elastoplastic constitutive model for remolded loess is established through the triaxial creep tests under loading and unloading conditions and verified by the dynamic triaxial test, and the corresponding parameter indexes are obtained. The research shows that the constitutive model can well describes the creep, static and dynamic characteristics of the remolded loess and it more reasonably explain the variation characteristics of rebound curve under unloading conditions. In addition, the processing method for the infinitesimalization of plastic elements makes up for the shortcomings that plastic deformation is not easy to describe in the previous visco-elastoplastic constitutive model. Compared with other visco-elastoplastic constitutive models, the proposed model is simpler and more widely used.
  • [1]
    TOSHIHISA A, FUSAO O, MASASHI K. An Elasto- viscoplastic constitutive model with strain-softening for soft sedimentary rocks[J]. Soils and Foundations, 2005, 45(2): 125-133 doi: 10.3208/sandf.45.2_125
    [2]
    胡再强, 王凯, 李宏儒, 等. 人工制备遗址土非线性蠕变本构模型研究[J]. 岩土工程学报, 2021, 43(增刊1): 13-18. doi: 10.11779/CJGE2021S1003

    HU Zaiqiang, WANG Kai, LI Hongru, et al. Nonlinear creep constitutive model for artificially prepared site soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 13-18(in Chinese) doi: 10.11779/CJGE2021S1003
    [3]
    邓会元, 戴国亮, 邱国阳, 等. 杭州湾淤泥质粉质黏土排水蠕变试验及元件蠕变模型[J]. 东南大学学报(自然科学版), 2021, 51(2): 318-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202102019.htm

    DENG Huiyuan, DAI Guoliang, QIU Guoyang, et al. Drained creep test and component creep model of soft silty clay in Hangzhou Bay[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(2): 318-324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202102019.htm
    [4]
    徐辉, 王靖涛, 张光永. 基于细观力学分析的砂土弹塑性本构模型[J]. 固体力学学报, 2006, 27(3): 249-254. doi: 10.3969/j.issn.0254-7805.2006.03.006

    XU Hui, WANG Jingtao, ZHANG Guangyong. An elastic-plastic constitutive model for sand based on micromechanics method[J]. Acta Mechanica Solida Sinica, 2006, 27(3): 249-254. (in Chinese) doi: 10.3969/j.issn.0254-7805.2006.03.006
    [5]
    姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832. http://cge.nhri.cn/cn/article/id/14436

    YAO Yangping, YU Yani. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832. (in Chinese) http://cge.nhri.cn/cn/article/id/14436
    [6]
    姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. doi: 10.3321/j.issn:1000-6915.2009.10.023

    YAO Yangping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023
    [7]
    何冠, 姚仰平. 统一硬化模型与下加载面模型的理论关系[J]. 岩土力学, 2022, 43(增刊2): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2002.htm

    HE Guan, YAO Yangping. Theoretical relation between unified hardening model and sub-loading surface model[J]. Rock and Soil Mechanics, 2022, 43(S2): 11-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2002.htm
    [8]
    路德春, 金辰逸, 梁靖宇, 等. 考虑状态相关的砂土非正交弹塑性本构模型[J]. 岩土工程学报, 2023, 45(2): 221-231. doi: 10.11779/CJGE20211457

    LU Dechun, JIN Chenyi, LIANG Jingyu, et al. State-dependent non-orthogonal elastoplastic constitutive model for sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 221-231. (in Chinese) doi: 10.11779/CJGE20211457
    [9]
    AMOROSI A, KAVVADAS M. A. constitutive model for structured soils[J]. Géotechnique, 2000, 50(3): 263-273. doi: 10.1680/geot.2000.50.3.263
    [10]
    谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 2004.

    XIE Dingyi. Soil Dynamics[M]. Xi'an: Xi'an Jiaotong University Press, 2004. (in Chinese)
    [11]
    穆锐, 黄质宏, 浦少云, 等. 循环荷载下原状红黏土的累积变形特征及动本构关系研究[J]. 岩土力学, 2020, 41(增刊2): 1-10.

    MU Rui, HUANG Zhihong, PU Shaoyun, et al. Accumulated deformation characteristics of undisturbed red clay under cyclic loading and dynamic constitutive relationship[J]. Rock and Soil Mechanics, 2020, 41(S2): 1-10. (in Chinese)
    [12]
    崔凯, 李永奎. 川西崩坡积混合土循环荷载下非饱和动本构模型[J]. 岩土力学, 2017, 38(8): 2157-2166. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708002.htm

    CUI Kai, LI Yongkui. Study on constitutive model of unsaturated Chuanxi talus mixed soil under cyclic loading[J]. Rock and Soil Mechanics, 2017, 38(8): 2157-2166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708002.htm
    [13]
    魏尧, 杨更社, 申艳军, 等. 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008015.htm

    WEI Yao, YANG Gengshe, SHEN Yanjun, et al. Creep test and constitutive model of Cretaceous saturated frozen sandstone[J]. Rock and Soil Mechanics, 2020, 41(8): 2636-2646. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008015.htm
    [14]
    LIAN B Q, WANG X G, ZHAN H B, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589. doi: 10.1016/j.enggeo.2022.106589
    [15]
    MANUELA C S, CRISTELO N, ROUAINIA M, et al. Constitutive behaviour of a clay stabilised with alkali-activated cement based on blast furnace slag[J]. Sustainability, 2022, 14(21): 13736-13757 doi: 10.3390/su142113736
    [16]
    LI Z X, WANG J D, YANG S, et al. Characteristics of microstructural changes of malan loess in Yan'an area during creep test[J]. Water, 2022, 14(3): 438-460 doi: 10.3390/w14030438
    [17]
    黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983.

    HUANG Wenxi. Engineering Properties of Soil[M]. Beijing: Water Resources and Hydropower Press, 1983. (in Chinese)
  • Related Articles

    [1]ZHANG Siyu, ZHANG Yonggan, LU Yang, LIU Sihong. Experimental study on freezing deformation characteristics of unsaturated expansive soils considering cyclic freeze-thaw and initial anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1004-1013. DOI: 10.11779/CJGE20231279
    [2]WANG Yapeng, LI Guoyu, CHEN Dun, MA Wei, ZHANG Xuan. Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017
    [3]LI Ya-jie, WANG Xu-dong, WANG Ya-ping, CHANG Yin-sheng. Deformation characteristics of sand in confined aquifer under cyclic pumping-recharging groundwater[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1943-1949. DOI: 10.11779/CJGE201810023
    [4]YU Wei-jian, WANG Wei-jun, WEN Guo-hua, ZHANG Nong, WU Hai, ZHANG Yong-qing. Deformation mechanism and control technology of coal roadway under deep well and compound roof[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1501-1508.
    [5]QIAO Ya-fei, DING Wen-qi, WANG Jun, WANG Chun-bo. Deformation characteristics of deep excavations for metro stations in Wuxi[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 761-766.
    [6]WU Hong-gang, MA Hui-min, BAO Gui-yu. Deformation mechanism of tunnel-slope system in shallow tunnels under unsymmetrical pressure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 509-514.
    [7]Deformation mechanism of secondary consolidation of natural clays[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [8]Strength and deformation characteristics and critical state of rock fill[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2).
    [9]LI Jianlin, LIU Jie, WANG Lehua. Studies on deformation mechanism and rock mass stability of high slopes of Geheyan Power Station under multiple factors[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1289-1295.
    [10]Miao Tiande, Liu Zhongyu, Ren Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return