• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN De'an. Mechanical behaviors and constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 1-23. DOI: 10.11779/CJGE20221450
Citation: SUN De'an. Mechanical behaviors and constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 1-23. DOI: 10.11779/CJGE20221450

Mechanical behaviors and constitutive model for unsaturated soils

More Information
  • Received Date: November 20, 2022
  • Available Online: February 03, 2023
  • Published Date: November 20, 2022
  • The ground surface soils are almost unsaturated, especially in arid and semi-arid areas, and the engineering problems of unsaturated soils cannot be properly explained and dealt with by the saturated soil mechanics and the relevant experimental means. First the unsaturated degrees of soils are described by low and high suctions, respectively. By reviewing the theory of saturated soil mechanics, the current commonly accepted theories of unsaturated soil mechanics are introduced. Then, the testing methods for measuring the water retention and mechanical behaviors of unsaturated soils in the low suction range are presented. The focus is on the precautions and countermeasures required by the use of ceramic plates and the volume measurement method for unsaturated soils by using the triaxial instruments. The results of the suction-controlled compression, triaxial shear and true triaxial tests are used to illustrate the typical mechanical behaviors of unsaturated soils. After analyzing the coupling characteristics of hydraulic and mechanical behaviors and the factors directly influencing the water-retention curves based on the test results, a coupling model for describing the hydraulic and mechanical behaviors of unsaturated soils is established by the using the elastic-plastic method, and is verified by suction-controlled or measured isotropic compression and triaxial test results. Subsequently, the stress-strain relationships of four typical soils over a wide suction range are given by means of the suction-controlled triaxial test method developed by the author's group in the high suction range. Finally, the measured strength data of two soils over a wide suction range are used to analyze the applicability of various equations for calculating the strength of unsaturated soils.
  • [1]
    孙德安, 张舟, 高游, 等. 黏性土土水特征曲线基本参数的确定[J]. 上海大学学报(自然科学版), 2019, 25(6): 958-964. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201906012.htm

    SUN De'an, ZHANG Zhou, GAO You, et al. Determination of basic parameters of SWCC for clayey soils[J]. Journal of Shanghai University (Natural Science), 2019, 25(6): 958-964. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201906012.htm
    [2]
    FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley-Interscience, 1993.
    [3]
    FREDLUND D G, MORGENSTERN N R. Stress state variables for unsaturated soils[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 447-466. doi: 10.1061/AJGEB6.0000423
    [4]
    HILF J W. An investigation of pore-water pressure in compacted cohesive soils[D]. Colorado: University of Denver, 1956.
    [5]
    ZHANG J R, SUN D A, ZHOU A N, et al. Hydromechanical behaviour of expansive soils with different suctions and suction histories[J], Canadian Geotechnical Journal, 2016, 53(1): 1-13. doi: 10.1139/cgj-2014-0366
    [6]
    GAO Y, SUN D A, ZHU Z C, et al. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range[J]. Acta Geotechnica, 2019, 14(2): 417-428. doi: 10.1007/s11440-018-0662-5
    [7]
    ZHANG J R, NIU G, LI X C, et al. Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range[J]. Acta Geotechnica, 2020, 15(1): 265-278. doi: 10.1007/s11440-019-00874-y
    [8]
    CHEN B, GAO Y, SUN D A, et al. Simple testing method for measuring the triaxial stress-strain relations of unsaturated soils at high suctions[J]. Geotechnical Testing Journal, 2021, 44(2): 535-546.
    [9]
    LI J, SUN D A, SHENG D C, et al. Preliminary study on soil-water characteristics of Mary land clay[C]// Proc 3rd Asian Conference on Unsaturated Soils. Nanjing, 2007: 569-574.
    [10]
    LIU Z B, SUN D A, LI J, et al. Suction-controlled oedometers on Maryland clay in Newcastle[C]// Proc 3rd Asian Conference on Unsaturated Soils. Nanjing, 2007: 575-579.
    [11]
    SUN D A, MATSUOKA H, XU Y F. Collapse behavior of compacted clays by suction-controlled triaxial tests[J]. Geotechnical Testing Journal, 2004, 27(4): 362-370.
    [12]
    NG C W W, ZHAN L T, CUI C Y. A new simple system for measuring volume changes in unsaturated soil[J]. Canadian Geotechnical Journal, 2002, 39(3): 757-764. doi: 10.1139/t02-015
    [13]
    YIN J H. A double cell triaxial system for continuous measurement of volume changes of an unsaturated or saturated soil specimen in triaxial testing[J]. Geotechnical Testing Journal, 2003, 26(3): 353-358.
    [14]
    SUN D A, SHENG D C, XU Y F. Collapse behaviour of unsaturated compacted soil with different initial densities[J]. Canadian Geotechnical Journal, 2007, 44(6): 673-686. doi: 10.1139/t07-023
    [15]
    黄土湿陷试验, 土工试验方法标准: GBT 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Loess Collapsibility Test, Standard for Soil Testing Method: GBT 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [16]
    MATSUOKA H, SUN D A, ANDO M, et al. Deformation and strength of unsaturated soil by true triaxial tests, Proc. 2nd International Conference on Unsaturated Soils, Beijing, 1998, 1: 410-415.
    [17]
    MATSUOKA H, SUN D A, KOGANE A, et al. Stress-strain behaviour of unsaturated soil in true triaxial tests[J]. Canadian Geotechnical Journal, 2002, 39(3): 608-619. doi: 10.1139/t02-031
    [18]
    MATSUOKA H, SUN D A. Extension of Spatially Mobilized Plane (SMP) to frictional and cohesive materials and its application to cemented sands[J]. Soils and Foundations, 1995, 35(4): 63-72. doi: 10.3208/sandf.35.4_63
    [19]
    VAN GENUCHTEN T M. A closed-form predicting the hydraulic conductivity of unsaturated soil[J]. Soil Science Society of America Journal, 1980, 44(44): 892-898.
    [20]
    FREDLUND D G, XING A. Equation for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
    [21]
    ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430. doi: 10.1680/geot.1990.40.3.405
    [22]
    SUN D A, SHENG D C, CUI H B, et al. A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(11): 1257-1279. doi: 10.1002/nag.579
    [23]
    SUN D A, SUN W J, XIANG L. Effect of degree of saturation on mechanical behaviour of unsaturated soils and its elastoplastic simulation[J]. Computers and Geotechnics, 2010, 37(5): 678-688. doi: 10.1016/j.compgeo.2010.04.006
    [24]
    SUN D A, SHENG D C, SLOAN S W. Elastoplastic modeling of hydraulic and stress-strain behavior of unsaturated soils[J]. Mechanics of Materials, 2007, 39(3): 212-221. doi: 10.1016/j.mechmat.2006.05.002
    [25]
    SUN D A, CUI H B, MATSUOKA H, et al. A three-dimensional elastoplastic model for unsaturated compacted soils with hydraulic hysteresis[J]. Soils and Foundations, 2007, 47(2): 253-264. doi: 10.3208/sandf.47.253
    [26]
    BISHOP A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 39: 1859-863.
    [27]
    HOULSBY G. T. The work input to an unsaturated granular materials[J]. Géotechnique, 1997, 47(1): 193-196. doi: 10.1680/geot.1997.47.1.193
    [28]
    MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95. doi: 10.3208/sandf.39.81
    [29]
    YAO Y P, SUN D A. Application of Lade's criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112)
    [30]
    SUN D A, MATSUOKA H, YAO Y P, et al. An elasto-plastic model for unsaturated soil in three-dimensional stresses[J]. Soils and Foundations, 2000, 40(3): 17-28. doi: 10.3208/sandf.40.3_17
    [31]
    SUN D A, SHENG D C, XIANG L, et al. Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions[J]. Computers and Geotechnics, 2008, 36(6): 845-853.
    [32]
    PATIL U D, HOYOS L R, PUPPALA A J. Characterization of compacted silty sand using a double-walled triaxial cell with fully automated relative-humidity control[J]. Geotechnical Testing Journal, 2016, 39(5): 742-756.
    [33]
    孙德安, 徐钱垒, 陈波, 等. 广吸力范围内非饱和原状黄土的力学特性[J]. 岩土工程学报, 2020, 42(9): 1586-1592. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009005.htm

    SUN De'an, XU Qianlei, CHEN Bo, et al. Mechanical behavior of unsaturated intact loess over a wide suction range[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1586-1592. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009005.htm
    [34]
    FREDLUND D G, MORGENSTERN N R, WIDGER R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15(3): 313-321. doi: 10.1139/t78-029
    [35]
    CHANEY R C, DEMARS K R, OBERG A L, et al. Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve[J]. Geotechnical Testing Journal, 1997, 20(1): 40-48. doi: 10.1520/GTJ11419J
    [36]
    KHALILI N, KHABBAZ M H. A unique relationship for χ for the determination of the shear strength of unsaturated soils[J]. Géotechnique, 1998, 48(5): 681-687. doi: 10.1680/geot.1998.48.5.681
    [37]
    BISHOP A W, BLIGHTG E. Some aspects of effective stress in saturated and partly saturated soils[J]. Géotechnique, 1963, 13(3): 177-197. doi: 10.1680/geot.1963.13.3.177
    [38]
    VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392. doi: 10.1139/t96-060
    [39]
    TEKINSOY M A, KAYADELEN C, KESKIN M S, et al. An equation for predicting shear strength envelope with respect to matric suction[J]. Computers and Geotechnics, 2004, 31(7): 589-593. doi: 10.1016/j.compgeo.2004.08.001
    [40]
    KONRAD J M, LEBEAU M. Capillary-based effective stress formulation for predicting shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2015, 52(12): 2067-2076. doi: 10.1139/cgj-2014-0300
    [41]
    ZHOU A N, HUANG R Q, SHENG D C. Capillary water retention curve and shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2016, 53(6): 974-987. doi: 10.1139/cgj-2015-0322
    [42]
    ZHANG C, LU N. Unified effective stress equation for soil[J]. Journal of Engineering Mechanics, 2020, 146(2): 04019135. doi: 10.1061/(ASCE)EM.1943-7889.0001718
    [43]
    ALONSO E E, PINYOL N M, GENS A. Compacted soil behaviour: initial state, structure and constitutive modelling[J]. Géotechnique, 2013, 63(6): 463-478. doi: 10.1680/geot.11.P.134
    [44]
    ROHM S A, VILAR O M. Shear strength of an unsaturated sandy soil[C]// Proceedings of the 1st International Conference on Unsaturated Soils. Paris, 1995.
    [45]
    沈珠江. 非饱和土力学的回顾与展望[J]. 水利水电科技进展, 1996, 16(1): 1-5, 20. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD199601000.htm

    SHEN Zhujiang. Review and prospect of unsaturated soil mechanics[J]. Advances in Science and Technology of Water Resources, 1996, 16(1): 1-5, 20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD199601000.htm
    [46]
    缪林昌, 殷宗泽. 非饱和土的剪切强度[J]. 岩土力学, 1999, 20(3): 1-6.

    MIU Linchang, YIN Zongze. Shear Strength of Unsaturated Soil[J]. Rock and Soil Mechanics, 1999, 20(3): 1-6. (in Chinese)
    [47]
    JIANG M J, LEROUEIL S, KONRAD J M. Insight into shear strength functions of unsaturated granulates by DEM analysis. Computers and Geotechnics, 2004, 31(6): 473-489. doi: 10.1016/j.compgeo.2004.07.001
    [48]
    VILAR O M. A simplified procedure to estimate the shear strength envelope of unsaturated soils[J]. Canadian Geotechnical Journal, 2006, 43(10): 1088-1095. doi: 10.1139/t06-055
  • Cited by

    Periodical cited type(21)

    1. 孟珂,王笑梅,杜晓冉,张晓曼,罗娟. 罕见多矿物晶体共生标本的综合鉴定. 矿产综合利用. 2025(01): 200-205 .
    2. 刘勇,张志康,魏建平,徐向宇,郜英俊. 柔性刀具冲击破煤能量演化及关键参数. 煤炭学报. 2025(02): 965-974 .
    3. 李红丽. 非均质岩石单轴压缩下损伤演化规律数值模拟研究. 有色矿冶. 2024(01): 43-48 .
    4. 鞠明和,陶泽军,蔚立元,姜礼杰,郑彦龙,邹春江. 钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究. 岩土力学. 2024(04): 1242-1255 .
    5. 吴泽兵,袁若飞,张文溪,王刚,胡诗尧. PDC混合布齿钻头破碎非均质花岗岩数值模拟. 天然气工业. 2024(05): 105-117 .
    6. 周元,吕威帆,王颖轶. 基于块体离散元法的盾构掘进围岩与管片变形模拟研究. 都市快轨交通. 2024(03): 125-134 .
    7. 裴书锋,郝文锋,王营利,王一汀,曾凤娟. 双江口水电站花岗岩单轴压缩微观破坏机制研究. 西北水电. 2024(04): 62-68 .
    8. 张国桥,孙鹏,吴祥业,王婧雅,郭文斌,田宇航. 基于PFC-GBM非均质模型的砂岩裂纹演化细观规律研究. 中国矿业. 2024(09): 158-169 .
    9. 冯龙飞,王双明,王晓东,解嘉豪,窦林名. 煤单轴峰后动态冲击破坏特征及差异机制模拟研究. 煤炭学报. 2024(S2): 714-730 .
    10. 马文强,王酒婷. 花岗岩受压宏-细观破坏特征及能量演化规律. 信阳师范学院学报(自然科学版). 2023(02): 314-320 .
    11. 张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 .
    12. 乔世范,刘钰,王刚,张细宝,张海凤,董常瑞,谭晶仁,檀俊坤. 考虑岩石细观结构的TBM滚刀破岩过程数值研究. 中国安全生产科学技术. 2023(07): 106-112 .
    13. 向衍斌. 煤系岩石单轴压缩损伤破坏演化规律与表征. 煤矿安全. 2023(09): 88-95 .
    14. 赵光明,高宇,吴旭坤. 岩石变刚度实验条件下力学与声发射特性. 安徽理工大学学报(自然科学版). 2023(06): 63-72 .
    15. 王桂林,王润秋,孙帆. 块体离散元颗粒模型细观参数标定方法及花岗岩细观演化模拟. 长江科学院院报. 2022(01): 86-93 .
    16. 张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 .
    17. 兰恒星,包含,孙巍锋,刘世杰. 岩体多尺度异质性及其力学行为. 工程地质学报. 2022(01): 37-52 .
    18. 李博,梁秦源,周宇,赵程,伍法权. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究. 岩石力学与工程学报. 2022(06): 1114-1125 .
    19. Tongzhao Zhang,Hongguang Ji,Xiaobo Su,Shuang You,Daolu Quan,Zhou Zhang,Jinzhe Li. Evaluation and classification of rock heterogeneity based on acoustic emission detection. International Journal of Minerals, Metallurgy and Materials. 2022(12): 2117-2125 .
    20. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    21. 李博,朱强,张丰收,赵程,伍法权. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究. 岩石力学与工程学报. 2021(06): 1119-1131 .

    Other cited types(28)

Catalog

    Article views PDF downloads Cited by(49)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return