Citation: | SUN De'an. Mechanical behaviors and constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 1-23. DOI: 10.11779/CJGE20221450 |
[1] |
孙德安, 张舟, 高游, 等. 黏性土土水特征曲线基本参数的确定[J]. 上海大学学报(自然科学版), 2019, 25(6): 958-964. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201906012.htm
SUN De'an, ZHANG Zhou, GAO You, et al. Determination of basic parameters of SWCC for clayey soils[J]. Journal of Shanghai University (Natural Science), 2019, 25(6): 958-964. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201906012.htm
|
[2] |
FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: Wiley-Interscience, 1993.
|
[3] |
FREDLUND D G, MORGENSTERN N R. Stress state variables for unsaturated soils[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 447-466. doi: 10.1061/AJGEB6.0000423
|
[4] |
HILF J W. An investigation of pore-water pressure in compacted cohesive soils[D]. Colorado: University of Denver, 1956.
|
[5] |
ZHANG J R, SUN D A, ZHOU A N, et al. Hydromechanical behaviour of expansive soils with different suctions and suction histories[J], Canadian Geotechnical Journal, 2016, 53(1): 1-13. doi: 10.1139/cgj-2014-0366
|
[6] |
GAO Y, SUN D A, ZHU Z C, et al. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range[J]. Acta Geotechnica, 2019, 14(2): 417-428. doi: 10.1007/s11440-018-0662-5
|
[7] |
ZHANG J R, NIU G, LI X C, et al. Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range[J]. Acta Geotechnica, 2020, 15(1): 265-278. doi: 10.1007/s11440-019-00874-y
|
[8] |
CHEN B, GAO Y, SUN D A, et al. Simple testing method for measuring the triaxial stress-strain relations of unsaturated soils at high suctions[J]. Geotechnical Testing Journal, 2021, 44(2): 535-546.
|
[9] |
LI J, SUN D A, SHENG D C, et al. Preliminary study on soil-water characteristics of Mary land clay[C]// Proc 3rd Asian Conference on Unsaturated Soils. Nanjing, 2007: 569-574.
|
[10] |
LIU Z B, SUN D A, LI J, et al. Suction-controlled oedometers on Maryland clay in Newcastle[C]// Proc 3rd Asian Conference on Unsaturated Soils. Nanjing, 2007: 575-579.
|
[11] |
SUN D A, MATSUOKA H, XU Y F. Collapse behavior of compacted clays by suction-controlled triaxial tests[J]. Geotechnical Testing Journal, 2004, 27(4): 362-370.
|
[12] |
NG C W W, ZHAN L T, CUI C Y. A new simple system for measuring volume changes in unsaturated soil[J]. Canadian Geotechnical Journal, 2002, 39(3): 757-764. doi: 10.1139/t02-015
|
[13] |
YIN J H. A double cell triaxial system for continuous measurement of volume changes of an unsaturated or saturated soil specimen in triaxial testing[J]. Geotechnical Testing Journal, 2003, 26(3): 353-358.
|
[14] |
SUN D A, SHENG D C, XU Y F. Collapse behaviour of unsaturated compacted soil with different initial densities[J]. Canadian Geotechnical Journal, 2007, 44(6): 673-686. doi: 10.1139/t07-023
|
[15] |
黄土湿陷试验, 土工试验方法标准: GBT 50123—2019[S]. 北京: 中国计划出版社, 2019.
Loess Collapsibility Test, Standard for Soil Testing Method: GBT 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[16] |
MATSUOKA H, SUN D A, ANDO M, et al. Deformation and strength of unsaturated soil by true triaxial tests, Proc. 2nd International Conference on Unsaturated Soils, Beijing, 1998, 1: 410-415.
|
[17] |
MATSUOKA H, SUN D A, KOGANE A, et al. Stress-strain behaviour of unsaturated soil in true triaxial tests[J]. Canadian Geotechnical Journal, 2002, 39(3): 608-619. doi: 10.1139/t02-031
|
[18] |
MATSUOKA H, SUN D A. Extension of Spatially Mobilized Plane (SMP) to frictional and cohesive materials and its application to cemented sands[J]. Soils and Foundations, 1995, 35(4): 63-72. doi: 10.3208/sandf.35.4_63
|
[19] |
VAN GENUCHTEN T M. A closed-form predicting the hydraulic conductivity of unsaturated soil[J]. Soil Science Society of America Journal, 1980, 44(44): 892-898.
|
[20] |
FREDLUND D G, XING A. Equation for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
|
[21] |
ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430. doi: 10.1680/geot.1990.40.3.405
|
[22] |
SUN D A, SHENG D C, CUI H B, et al. A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(11): 1257-1279. doi: 10.1002/nag.579
|
[23] |
SUN D A, SUN W J, XIANG L. Effect of degree of saturation on mechanical behaviour of unsaturated soils and its elastoplastic simulation[J]. Computers and Geotechnics, 2010, 37(5): 678-688. doi: 10.1016/j.compgeo.2010.04.006
|
[24] |
SUN D A, SHENG D C, SLOAN S W. Elastoplastic modeling of hydraulic and stress-strain behavior of unsaturated soils[J]. Mechanics of Materials, 2007, 39(3): 212-221. doi: 10.1016/j.mechmat.2006.05.002
|
[25] |
SUN D A, CUI H B, MATSUOKA H, et al. A three-dimensional elastoplastic model for unsaturated compacted soils with hydraulic hysteresis[J]. Soils and Foundations, 2007, 47(2): 253-264. doi: 10.3208/sandf.47.253
|
[26] |
BISHOP A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 39: 1859-863.
|
[27] |
HOULSBY G. T. The work input to an unsaturated granular materials[J]. Géotechnique, 1997, 47(1): 193-196. doi: 10.1680/geot.1997.47.1.193
|
[28] |
MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95. doi: 10.3208/sandf.39.81
|
[29] |
YAO Y P, SUN D A. Application of Lade's criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112)
|
[30] |
SUN D A, MATSUOKA H, YAO Y P, et al. An elasto-plastic model for unsaturated soil in three-dimensional stresses[J]. Soils and Foundations, 2000, 40(3): 17-28. doi: 10.3208/sandf.40.3_17
|
[31] |
SUN D A, SHENG D C, XIANG L, et al. Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions[J]. Computers and Geotechnics, 2008, 36(6): 845-853.
|
[32] |
PATIL U D, HOYOS L R, PUPPALA A J. Characterization of compacted silty sand using a double-walled triaxial cell with fully automated relative-humidity control[J]. Geotechnical Testing Journal, 2016, 39(5): 742-756.
|
[33] |
孙德安, 徐钱垒, 陈波, 等. 广吸力范围内非饱和原状黄土的力学特性[J]. 岩土工程学报, 2020, 42(9): 1586-1592. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009005.htm
SUN De'an, XU Qianlei, CHEN Bo, et al. Mechanical behavior of unsaturated intact loess over a wide suction range[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1586-1592. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009005.htm
|
[34] |
FREDLUND D G, MORGENSTERN N R, WIDGER R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15(3): 313-321. doi: 10.1139/t78-029
|
[35] |
CHANEY R C, DEMARS K R, OBERG A L, et al. Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve[J]. Geotechnical Testing Journal, 1997, 20(1): 40-48. doi: 10.1520/GTJ11419J
|
[36] |
KHALILI N, KHABBAZ M H. A unique relationship for χ for the determination of the shear strength of unsaturated soils[J]. Géotechnique, 1998, 48(5): 681-687. doi: 10.1680/geot.1998.48.5.681
|
[37] |
BISHOP A W, BLIGHTG E. Some aspects of effective stress in saturated and partly saturated soils[J]. Géotechnique, 1963, 13(3): 177-197. doi: 10.1680/geot.1963.13.3.177
|
[38] |
VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392. doi: 10.1139/t96-060
|
[39] |
TEKINSOY M A, KAYADELEN C, KESKIN M S, et al. An equation for predicting shear strength envelope with respect to matric suction[J]. Computers and Geotechnics, 2004, 31(7): 589-593. doi: 10.1016/j.compgeo.2004.08.001
|
[40] |
KONRAD J M, LEBEAU M. Capillary-based effective stress formulation for predicting shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2015, 52(12): 2067-2076. doi: 10.1139/cgj-2014-0300
|
[41] |
ZHOU A N, HUANG R Q, SHENG D C. Capillary water retention curve and shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2016, 53(6): 974-987. doi: 10.1139/cgj-2015-0322
|
[42] |
ZHANG C, LU N. Unified effective stress equation for soil[J]. Journal of Engineering Mechanics, 2020, 146(2): 04019135. doi: 10.1061/(ASCE)EM.1943-7889.0001718
|
[43] |
ALONSO E E, PINYOL N M, GENS A. Compacted soil behaviour: initial state, structure and constitutive modelling[J]. Géotechnique, 2013, 63(6): 463-478. doi: 10.1680/geot.11.P.134
|
[44] |
ROHM S A, VILAR O M. Shear strength of an unsaturated sandy soil[C]// Proceedings of the 1st International Conference on Unsaturated Soils. Paris, 1995.
|
[45] |
沈珠江. 非饱和土力学的回顾与展望[J]. 水利水电科技进展, 1996, 16(1): 1-5, 20. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD199601000.htm
SHEN Zhujiang. Review and prospect of unsaturated soil mechanics[J]. Advances in Science and Technology of Water Resources, 1996, 16(1): 1-5, 20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD199601000.htm
|
[46] |
缪林昌, 殷宗泽. 非饱和土的剪切强度[J]. 岩土力学, 1999, 20(3): 1-6.
MIU Linchang, YIN Zongze. Shear Strength of Unsaturated Soil[J]. Rock and Soil Mechanics, 1999, 20(3): 1-6. (in Chinese)
|
[47] |
JIANG M J, LEROUEIL S, KONRAD J M. Insight into shear strength functions of unsaturated granulates by DEM analysis. Computers and Geotechnics, 2004, 31(6): 473-489. doi: 10.1016/j.compgeo.2004.07.001
|
[48] |
VILAR O M. A simplified procedure to estimate the shear strength envelope of unsaturated soils[J]. Canadian Geotechnical Journal, 2006, 43(10): 1088-1095. doi: 10.1139/t06-055
|
1. |
孟珂,王笑梅,杜晓冉,张晓曼,罗娟. 罕见多矿物晶体共生标本的综合鉴定. 矿产综合利用. 2025(01): 200-205 .
![]() | |
2. |
刘勇,张志康,魏建平,徐向宇,郜英俊. 柔性刀具冲击破煤能量演化及关键参数. 煤炭学报. 2025(02): 965-974 .
![]() | |
3. |
李红丽. 非均质岩石单轴压缩下损伤演化规律数值模拟研究. 有色矿冶. 2024(01): 43-48 .
![]() | |
4. |
鞠明和,陶泽军,蔚立元,姜礼杰,郑彦龙,邹春江. 钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究. 岩土力学. 2024(04): 1242-1255 .
![]() | |
5. |
吴泽兵,袁若飞,张文溪,王刚,胡诗尧. PDC混合布齿钻头破碎非均质花岗岩数值模拟. 天然气工业. 2024(05): 105-117 .
![]() | |
6. |
周元,吕威帆,王颖轶. 基于块体离散元法的盾构掘进围岩与管片变形模拟研究. 都市快轨交通. 2024(03): 125-134 .
![]() | |
7. |
裴书锋,郝文锋,王营利,王一汀,曾凤娟. 双江口水电站花岗岩单轴压缩微观破坏机制研究. 西北水电. 2024(04): 62-68 .
![]() | |
8. |
张国桥,孙鹏,吴祥业,王婧雅,郭文斌,田宇航. 基于PFC-GBM非均质模型的砂岩裂纹演化细观规律研究. 中国矿业. 2024(09): 158-169 .
![]() | |
9. |
冯龙飞,王双明,王晓东,解嘉豪,窦林名. 煤单轴峰后动态冲击破坏特征及差异机制模拟研究. 煤炭学报. 2024(S2): 714-730 .
![]() | |
10. |
马文强,王酒婷. 花岗岩受压宏-细观破坏特征及能量演化规律. 信阳师范学院学报(自然科学版). 2023(02): 314-320 .
![]() | |
11. |
张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 .
![]() | |
12. |
乔世范,刘钰,王刚,张细宝,张海凤,董常瑞,谭晶仁,檀俊坤. 考虑岩石细观结构的TBM滚刀破岩过程数值研究. 中国安全生产科学技术. 2023(07): 106-112 .
![]() | |
13. |
向衍斌. 煤系岩石单轴压缩损伤破坏演化规律与表征. 煤矿安全. 2023(09): 88-95 .
![]() | |
14. |
赵光明,高宇,吴旭坤. 岩石变刚度实验条件下力学与声发射特性. 安徽理工大学学报(自然科学版). 2023(06): 63-72 .
![]() | |
15. |
王桂林,王润秋,孙帆. 块体离散元颗粒模型细观参数标定方法及花岗岩细观演化模拟. 长江科学院院报. 2022(01): 86-93 .
![]() | |
16. |
张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 .
![]() | |
17. |
兰恒星,包含,孙巍锋,刘世杰. 岩体多尺度异质性及其力学行为. 工程地质学报. 2022(01): 37-52 .
![]() | |
18. |
李博,梁秦源,周宇,赵程,伍法权. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究. 岩石力学与工程学报. 2022(06): 1114-1125 .
![]() | |
19. |
Tongzhao Zhang,Hongguang Ji,Xiaobo Su,Shuang You,Daolu Quan,Zhou Zhang,Jinzhe Li. Evaluation and classification of rock heterogeneity based on acoustic emission detection. International Journal of Minerals, Metallurgy and Materials. 2022(12): 2117-2125 .
![]() |
|
20. |
郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 .
![]() | |
21. |
李博,朱强,张丰收,赵程,伍法权. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究. 岩石力学与工程学报. 2021(06): 1119-1131 .
![]() |