• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Dawei, ZHAO Zhiqi, XU Changjie, LUO Wenjun, GENG Daxin, SHI Yufeng. Experimental study on influences of side grouting on deformation of shield tunnels under loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 510-518. DOI: 10.11779/CJGE20221422
Citation: HUANG Dawei, ZHAO Zhiqi, XU Changjie, LUO Wenjun, GENG Daxin, SHI Yufeng. Experimental study on influences of side grouting on deformation of shield tunnels under loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 510-518. DOI: 10.11779/CJGE20221422

Experimental study on influences of side grouting on deformation of shield tunnels under loads

More Information
  • Received Date: November 16, 2022
  • Available Online: July 05, 2023
  • When the lateral grouting method is used to control the transverse elliptic deformation of a shield tunnel, the additional earth pressure around the shield tunnel and the deformation characteristics of the tunnel are not clear. The effects of side grouting on the existing shield tunnel are studied through the shrinkage model tests with the geometric similarity ratio of 1∶10. The test results show that under the action of grouting extrusion, when the soil pressure around the tunnel increases locally at the grouting point, both sides decrease to a certain extent, resulting in an obvious horizontal passive soil arching phenomenon. Under the influences of additional grouting loads, the vertical elliptic deformation occurs near the grouting point, while the transverse elliptic deformation occurs farther away from the grouting point, and the tunnel has reverse bending phenomenon. In the process of grouting, the diffusion mode of "penetration→compaction→splitting" and the diffusion mode of "compaction→splitting→penetration" occurr, and the diffusion mechanism of the two grouting diffusion modes is clarified. The additional loads on the outer wall of the tunnel are mainly formed by the grouting pressure through osmotic diffusion and splitting diffusion. Meanwhile, the grout compresses the soil deformation of the grout to a certain extent on the grout around the tunnel.
  • [1]
    黄大维, 周顺华, 赖国泉, 等. 地表超载作用下盾构隧道劣化机理与特性[J]. 岩土工程学报, 2017, 39(7): 1173-1181. doi: 10.11779/CJGE201707002

    HUANG Dawei, ZHOU Shunhua, LAI Guoquan, et al. Mechanisms and characteristics for deterioration of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1173-1181. (in Chinese) doi: 10.11779/CJGE201707002
    [2]
    LI Mi G, CHEN J J, WANG J H, et al. Comparative study of construction methods for deep excavations above shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 71(9): 329-339.
    [3]
    LIANG R Z, WU W B, YU F, et al. Simplified method for evaluating shield tunnel deformation due to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2018, 71: 94-105. doi: 10.1016/j.tust.2017.08.010
    [4]
    黄大维, 周顺华, 宫全美, 等. 钢管压入土体施工挤土机制与案例分析[J]. 岩石力学与工程学报, 2013, 32(1): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201301023.htm

    HUANG Dawei, ZHOU Shunhua, GONG Quanmei, et al. Analysis of squeezing mechanism for jacked-in construction of steel pipe and project case[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 176-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201301023.htm
    [5]
    LIN X T, CHEN R P, WU H N, et al. Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle[J]. Tunnelling and Underground Space Technology, 2019, 89: 78-90. doi: 10.1016/j.tust.2019.03.021
    [6]
    张冬梅, 邹伟彪, 闫静雅. 软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报, 2014, 36(12): 2203-2212. doi: 10.11779/CJGE201412007

    ZHANG Dongmei, ZOU Weibiao, YAN Jingya. Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. (in Chinese) doi: 10.11779/CJGE201412007
    [7]
    高翔, 龚晓南, 朱旻, 等. 盾构隧道注浆纠偏数值模拟研究[J]. 铁道科学与工程学报, 2020, 17(6): 1480-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202006019.htm

    GAO Xiang, GONG Xiaonan, ZHU Min, et al. Numerical simulation of grouting remediation in shield tunnel[J]. Journal of Railway Science and Engineering, 2020, 17(6): 1480-1490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202006019.htm
    [8]
    郑刚, 潘军, 程雪松, 等. 基坑开挖引起隧道水平变形的被动与注浆主动控制研究[J]. 岩土工程学报, 2019, 41(7): 1181-1190. doi: 10.11779/CJGE201907001

    ZHENG Gang, PAN Jun, CHENG Xuesong, et al. Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1181-1190. (in Chinese) doi: 10.11779/CJGE201907001
    [9]
    GONG Q M, ZHAO Y, ZHOU J H, et al. Uplift resistance and progressive failure mechanisms of metro shield tunnel in soft clay[J]. Tunnelling and Underground Space Technology, 2018, 82(8): 222-234.
    [10]
    周俊宏, 宫全美, 周顺华, 等. 盾构隧道抬升作用下极限上覆土压力计算方法[J]. 岩土力学, 2016, 37(7): 1969-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607018.htm

    ZHOU Junhong, GONG Quanmei, ZHOU Shunhua, et al. Calculation method of limit overlying earth pressure on shield tunnel during lifting[J]. Rock and Soil Mechanics, 2016, 37(7): 1969-1976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607018.htm
    [11]
    朱旻, 龚晓南, 高翔, 等. 盾构隧道注浆纠偏模型试验研究[J]. 铁道科学与工程学报, 2020, 17(3): 660-667. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202003017.htm

    ZHU Min, GONG Xiaonan, GAO Xiang, et al. Model tests of correction of displaced shield tunnel using grouting technique[J]. Journal of Railway Science and Engineering, 2020, 17(3): 660-667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202003017.htm
    [12]
    付艳斌, 陈湘生, 吴沛霖. 既有地铁隧道纵向注浆抬升机理分析[J]. 现代隧道技术, 2020, 57(5): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202005025.htm

    FU Yanbin, CHEN Xiangsheng, WU Peilin. Analysis on mechanism of longitudinal grouting uplift of existing metro tunnel[J]. Modern Tunnelling Technology, 2020, 57(5): 184-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202005025.htm
    [13]
    黄大维, 陈后宏, 罗文俊, 等. 纵向残余顶推力对盾构隧道纵向刚度影响试验研究[J]. 中国铁道科学, 2023, 44(1): 142-152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202301015.htm

    HUANG Dawei, CHEN Houhong, LUO Wenjun, et al. Experimental study on the influence of shield tunnel longitudinal rigidity induced by longitudinal residual jacking force[J]. China Railway Science, 2023, 44(1): 142-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202301015.htm
    [14]
    黄大维, 罗仲睿, 罗文俊, 等. 盾构隧道施工同步注浆材料流动性测试方法及影响因素分析[J]. 中国铁道科学, 2022, 43(3): 94-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202203011.htm

    HUANG Dawei, LUO Zhongrui, LUO Wenjun, et al. Test method and influencing factors of fluidity of synchronous grouting material in shield tunnel construction[J]. China Railway Science, 2022, 43(3): 94-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202203011.htm
  • Cited by

    Periodical cited type(7)

    1. 向成兵. 基于数值模拟的碾压混凝土重力坝坝体开裂原因研究. 水利科技与经济. 2025(01): 64-70 .
    2. 张春顺,林正鸿,杨典森,陈嘉瑞. 考虑初始级配影响的粗粒土非线性弹性模型研究. 岩土力学. 2025(03): 750-760 .
    3. 蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 .
    4. 庞元恩,石国栋,段煜,姚敏,吉浩泽,罗鸣,李茂彪,李旭. 基于搜索分析深度学习网络(SaNet)的粗粒土级配识别. 岩土工程学报. 2024(09): 1984-1993 . 本站查看
    5. 卢斌,郑雪玉,吴修锋,谢兴华,李艳伟,王照英. 特高堆石坝砾石土心墙非均质缺陷对渗流场影响分析. 水电与抽水蓄能. 2023(03): 22-25+39 .
    6. 熊治茗,杜俊,杨志全,沈兴刚. 筑坝堆石料三轴剪切特性及变形破坏试验研究. 水利与建筑工程学报. 2023(06): 107-113 .
    7. 王明昌. 高砾石土心墙堆石坝过渡料爆破直采技术分析. 新型工业化. 2022(11): 132-135 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return