• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAI Qian, SHEN Tianlun, TIAN Gang, DAI Guoliang, ZHAO Xueliang, GONG Weiming, CAI Jianguo. Prediction of the coefficient of permeability for unsaturated soil by considering the film flow[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 291-298. DOI: 10.11779/CJGE20221322
Citation: ZHAI Qian, SHEN Tianlun, TIAN Gang, DAI Guoliang, ZHAO Xueliang, GONG Weiming, CAI Jianguo. Prediction of the coefficient of permeability for unsaturated soil by considering the film flow[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 291-298. DOI: 10.11779/CJGE20221322

Prediction of the coefficient of permeability for unsaturated soil by considering the film flow

More Information
  • Received Date: February 28, 2022
  • Available Online: February 05, 2024
  • It has become a common practice that the hydraulic conductivity of unsaturated soils is estimated from the soil-water characteristic curve by using either empirical method or statistical method. The estimated results by the empirical method are dependent on the empirical parameters while those by the statistical method are determined based on the theory of statistics. As a result, the results by the statistical method are more reliable than those by the empirical method. It is observed that the hydroscopic water is misused as the capillary water in the conventional statistical method. Because of the adsorptive force, the water film (hydroscopic water) is attached around the soil particle, and it acts as the transferring medium for the water migration in soils. The flowing rate of the water in the adsorbed water film is a function of the thickness of the water film. Both the thickness of water film around a single soil particle and the flowing rate through the water film are firstly computed. Subsequently, the probability of the connecting between particles with different sizes is calculated by using the grain size distribution (GSD) data. Consequently, a new equation is proposed for the estimation of the hydraulic conductivity of unsaturated soils by considering the film flows in soils. The proposed method is verified using the experimental data from literatures. It is indicated that results by the newly proposed method provide better agreement with the experimental data as compared with those by the conventional statistical method.
  • [1]
    WEBER T K D, DURNER W, STRECK T, et al. A modular framework for modeling unsaturated soil hydraulic properties over the full moisture range[J]. Water Resources Research, 2019, 55(6): 4994-5011. doi: 10.1029/2018WR024584
    [2]
    翟钱, 朱益瑶, 叶为民, 等. 全吸力范围非饱和土水力渗透系数的计算[J]. 岩土工程学报, 2022, 44(4): 660-668. doi: 10.11779/CJGE202204008

    ZHAI Qian, ZHU Yiyao, YE Weimin, et al. Estimation of hydraulic conductivity of unsaturated soils under entire suction range[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 660-668. (in Chinese) doi: 10.11779/CJGE202204008
    [3]
    GARDNER W R. Mathematics of isothermal water conduction in unsaturated soil[J]. Highway Research Board Special Report 1958, 40: 78-87
    [4]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [5]
    FREDLUND D G, XING A Q, HUANG S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 533-546. doi: 10.1139/t94-062
    [6]
    ZHAI Q, RAHARDJO H. Estimation of permeability function from the soil-water characteristic curve[J]. Engineering Geology, 2015, 199: 148-156. doi: 10.1016/j.enggeo.2015.11.001
    [7]
    叶为民, 钱丽鑫, 白云, 等. 由土-水特征曲线预测上海非饱和软土渗透系数[J]. 岩土工程学报, 2005, 27(11): 1262-1265. doi: 10.3321/j.issn:1000-4548.2005.11.005

    YE Weimin, QIAN Lixin, BAI Yun, et al. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1262-1265. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.11.005
    [8]
    蔡国庆, 盛岱超, 周安楠. 考虑初始孔隙比影响的非饱和土相对渗透系数方程[J]. 岩土工程学报, 2014, 36(5): 827-835. doi: 10.11779/CJGE201405004

    CAI Guoqing, SHENG Daichao, ZHOU Annan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. (in Chinese) doi: 10.11779/CJGE201405004
    [9]
    TOKUNAGA T K, WAN J M. Water film flow along fracture surfaces of porous rock[J]. Water Resources Research, 1997, 33(6): 1287-1295. doi: 10.1029/97WR00473
    [10]
    TOKUNAGA T K, WAN J M, SUTTON S R. Transient film flow on rough fracture surfaces[J]. Water Resources Research, 2000, 36(7): 1737-1746. doi: 10.1029/2000WR900079
    [11]
    LIU H H. A constitutive-relationship model for film flow on rough fracture surfaces[J]. Hydrogeology Journal, 2004, 12(2): 237-240.
    [12]
    TOKUNAGA T K. Hydraulic properties of adsorbed water films in unsaturated porous media[J]. Water Resources Research, 2009, 45(6): W06415.
    [13]
    LEBEAU M, KONRAD J M. A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 2010, 46(1): 1-15.
    [14]
    TULLER M, OR D. Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space[J]. Water Resources Research, 2001, 37(5): 1257-1276. doi: 10.1029/2000WR900328
    [15]
    IWAMATSU M, HORII K. Capillary condensation and adhesion of two wetter surfaces[J]. Journal of Colloid and Interface Science, 1996, 182(2): 400-406. doi: 10.1006/jcis.1996.0480
    [16]
    BIRD R B, STEWART W E, LIGHTFOOT E N. Transport phenomena[M]. New York: John Wiley & Sons, Inc, 1960.
    [17]
    PACHEPSKY Y A, SHCHERBAKOV R, VARALLYAY G, et al. On obtaining soil hydraulic conductivity curves from water retention curves [J]. Pochvovedenie, 1984, 10: 60-72.
    [18]
    MUALEM Y. Hydraulic conductivity of unsaturated soils: prediction and formulas[M]//SSSA Book Series. Madison, WI, USA: Soil Science Society of America, American Society of Agronomy, 2018: 799-823.
    [19]
    NEMES A, SCHAAP M G, LEIJ F J, et al. Description of the unsaturated soil hydraulic database UNSODA version 2.0[J]. Journal of Hydrology, 2001, 251(3/4): 151-162.
    [20]
    SCHINDLER U G, MÜLLER L. Soil hydraulic functions of international soils measured with the Extended Evaporation Method (EEM) and the HYPROP device[J]. Open Data Journal for Agricultural Research, 2017, 3: 1-7.
    [21]
    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
    [22]
    ZHAI Q, RAHARDJO H, SATYANAGA A. Effect of bimodal soil-water characteristic curve on the estimation of permeability function[J]. Engineering Geology, 2017, 230: 142-151. doi: 10.1016/j.enggeo.2017.09.025
    [23]
    ZHAI Q, RAHARDJO H. Determination of soil-water characteristic curve variables[J]. Computers and Geotechnics, 2012, 42: 37-43. doi: 10.1016/j.compgeo.2011.11.010
    [24]
    ZHANG F X, FREDLUND D G. Examination of the estimation of relative permeability for unsaturated soils[J]. Canadian Geotechnical Journal, 2015, 52(12): 2077-2087. doi: 10.1139/cgj-2015-0043
    [25]
    ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Framework to estimate the soil-water characteristic curve for soils with different void ratios[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(8): 4399-4409. doi: 10.1007/s10064-020-01825-8
    [26]
    ZHAI Q, RAHARDJO H, SATYANAGA A. Effects of residual suction and residual water content on the estimation of permeability function[J]. Geoderma, 2017, 303: 165-177. doi: 10.1016/j.geoderma.2017.05.019
  • Cited by

    Periodical cited type(15)

    1. 葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 .
    2. 胡静,金林廉,吕志豪,张家康,边学成. 基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应. 岩土工程学报. 2025(02): 397-406 . 本站查看
    3. 周葆春,江星澐,马全国,单丽霞,王江伟,李颖,易先达,孔令伟. 低应力和湿化路径下膨胀土的力学行为与本构模拟. 岩土工程学报. 2025(04): 695-704 . 本站查看
    4. 李佳文,陈高明,田世龙,韩博文,冯怀平,杨志浩. 土体含水率对振动压实的影响及电阻率演化特征研究. 振动与冲击. 2025(07): 16-25 .
    5. 吴炎,胡坤,姜马欢,李荟楠,彭哲. 两种气体作用下非饱和江边吹填砂三轴试验研究. 人民长江. 2024(02): 211-215+230 .
    6. 赵中航,林昱利,郭浩天,刘全想,任淇淇. 温度及饱和度对粉质黏土变形特性的影响. 低温建筑技术. 2024(02): 119-123 .
    7. 赵习武. 土工格室在库岸非饱和土边坡稳定性治理中的应用. 水利技术监督. 2024(06): 276-278+282 .
    8. 张莹,刘忠,谢文博. 非饱和土地基的承载比试验分析. 工程与建设. 2024(02): 417-419 .
    9. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
    10. 朱振慧,赵连军,张防修,黄李冰. 基于黏粒含量的黄河下游堤防土水特征曲线预测研究. 人民黄河. 2024(10): 55-61 .
    11. 陈可,王琛,梁发云,汪中卫. 考虑水力滞后与变形耦合的非饱和土持水曲线模型. 岩土力学. 2024(12): 3694-3704+3716 .
    12. 李纯,王煜斌,王刚. 层状土体变特性及变形计算方法研究进展. 水利与建筑工程学报. 2023(04): 1-9 .
    13. 权国绍,刘鹏. 强降雨条件下高填路段路基滑坡稳定性数值优化分析. 粘接. 2023(11): 165-168 .
    14. 周子宜. 鸡姆塘水库大坝除险加固渗流与坝坡稳定分析. 水利科学与寒区工程. 2023(11): 33-36 .
    15. 上官云龙,李东鑫,王罡. 冻融循环对膨胀土力学特性的影响及本构描述. 吉林建筑大学学报. 2023(06): 33-38 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return