• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Changhui, LIU Songyu, DU Guangyin, ZHUANG Zhongxun, YANG Yong, HE Huan. Model tests on reinforcement of collapsible loess by pneumatic-vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 325-334. DOI: 10.11779/CJGE20221301
Citation: GAO Changhui, LIU Songyu, DU Guangyin, ZHUANG Zhongxun, YANG Yong, HE Huan. Model tests on reinforcement of collapsible loess by pneumatic-vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 325-334. DOI: 10.11779/CJGE20221301

Model tests on reinforcement of collapsible loess by pneumatic-vibratory probe compaction method

More Information
  • Received Date: October 20, 2022
  • Available Online: February 05, 2024
  • The pneumatic-vibratory probe compaction method is a new technology for the treatment of collapsible loess. By using the self-developed pneumatic-vibration model test devices, the model tests on the reinforcement of collapsible loess are carried out by the above method under two test conditions, single excitation force and air jet combined with excitation force. The reinforcement effects are evaluated. The change rules of the horizontal soil pressure, vertical vibration velocity of soil particles and gas pressure values in the soils during the penetration of the vibratory probe are studied. The results show that the density of soil layers at each depth is significantly increased, and the collapsibility coefficient is reduced after the treatment. With the addition of air jet, the density of the soil layers below 100 mm in depth is further increased, and the maximum horizontal soil pressure is increased by 20.4%. At the same time, the vibration response of soils caused by the method is amplified. The mechanism of air jet in the process of soil reinforcement is revealed, and the mechanism of the pneumatic-vibratory probe compaction method to reinforce collapsible loess is discussed, which provides the theoretical basis for promoting the application of the method to treat collapsible loess foundation.
  • [1]
    MASSARSCH K R, WERSÄLL C, FELLENIUS B H. Liquefaction induced by deep vertical vibratory compaction[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2021, 174(3): 194-205. doi: 10.1680/jgrim.19.00018
    [2]
    ANDERSON R D. New method for deep sand vibratory compaction[J]. Journal of the Construction Division, 1974, 100(1): 79-95. doi: 10.1061/JCCEAZ.0000412
    [3]
    MASSARSCH K R. Effects of vibratory compaction[C]// TransVib 2002–International Conference on Vibratory Pile Driving and Deep Soil Compaction. Louvain-la-Neuve. Keynote Lecture, 2002: 33-42.
    [4]
    MASSARSCH K R, FELLENIUS B H. Vibratory compaction of coarse-grained soils[J]. Canadian Geotechnical Journal, 2002, 39(3): 695-709. doi: 10.1139/t02-006
    [5]
    MASSARSCH K R, WERSÄLL C, FELLENIUS B H. Horizontal stress increase induced by deep vibratory compaction[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2020, 173(3): 228-253. doi: 10.1680/jgeen.19.00040
    [6]
    SAITO A. Characteristics of penetration resistance of A reclaimed sandy deposit and their change through vibratory compaction[J]. Soils and Foundations, 1977, 17(4): 31-43. doi: 10.3208/sandf1972.17.4_31
    [7]
    MASSARSCH K R, BROMS B B. Soil compaction by vibro wing method[C]//Proceedings of the Eighth European Conference on Soil Mechanics and Foundation Engineering, Helsinki, 1983: 275-278.
    [8]
    VAN IMPE W F, HAEGEMAN W, MEMGE P, et al. Dynamic soil improvement methods[C]// Proceedings of Soil Dynamics and Geotechnical Earthquake Engineering, Rotterdam, 1993: 81.
    [9]
    VAN IMPE W F, De C F, MENGE P. Recent experiences and developments of the resonant vibrocompaction technique[C]// Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam, 1994.
    [10]
    刘松玉, 杜广印, 苗永红. 十字形振动翼: CN101024952A[P]. 2007-08-29.

    LIU Songyu, DU Guangyin, MIAO Yonghong. Cross-shaped Vibration Wing: CN101024952A[P]. 2007-08-29. (in Chinese)
    [11]
    刘松玉, 程远. 共振法加固公路可液化地基试验[J]. 中国公路学报, 2012, 25(6): 24-29. doi: 10.3969/j.issn.1001-7372.2012.06.004

    LIU Songyu, CHENG Yuan. Resonance compaction method for highway ground improvement at liquefaction site[J]. China Journal of Highway and Transport, 2012, 25(6): 24-29. (in Chinese) doi: 10.3969/j.issn.1001-7372.2012.06.004
    [12]
    DU G Y, GAO C H, LIU S Y, et al. Evaluation method for the liquefaction potential using the standard penetration test value based on the CPTU soil behavior type index[J]. Advances in Civil Engineering, 2019, 2019: 1-8.
    [13]
    杜广印, 刘松玉, 任蓓蓓, 等. 十字形振动翼共振法在处理可液化地基中的应用[J]. 工程地质学报, 2014, 22(增刊): 466-469.

    DU Guangyin, LIU Songyu, REN Bei-bei, et al. Application of treatment on liquefied foundation usingresonance compaction method[J]. Journal of Engineering Geology, 2014, 22(S0): 466-469. (in Chinese)
    [14]
    谢羚, 杜广印, 缪冬冬, 等. 十字振动翼共振法处理滨海相可液化地基的效果评价[J]. 工程地质学报, 2015, 23(增刊): 695-698.

    XIE Ling, DU Guangyin, MIU Dongdong, et al. Effect evaluation of treatment on coastal liquefiable ground using resonant compaction method[J]. Journal of Engineering Geology, 2014, 22(S0): 695-698. (in Chinese)
    [15]
    刘松玉, 杜广印, 章定文, 等. 振杆密实法处理湿陷性黄土地基的方法, 201910482316.1[P], 2020-12-27.

    LIU Songyu, DU Guangyin, ZHANG Dingwen, et al. Method for Treating Collapsible Loess Foundation by Vibratory Probe Compaction Method, 201910482316.1[P], 2020-12-27. (in Chinese)
    [16]
    刘松玉, 杜广印, 毛忠良, 等. 振杆密实法处理湿陷性黄土地基试验研究[J]. 岩土工程学报, 2020, 42(8): 1377-1383. doi: 10.11779/CJGE202008001

    LIU Songyu, DU Guangyin, MAO Zhongliang, et al. Field tests on improvement of collapsible loess by vibratory probe compaction method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1377-1383. (in Chinese) doi: 10.11779/CJGE202008001
    [17]
    GAO C H, DU G Y, LIU S Y, et al. Field study on the treatment of collapsible loess using vibratory probe compaction method[J]. Engineering Geology, 2020, 274: 105715. doi: 10.1016/j.enggeo.2020.105715
    [18]
    GAO C H, DU G Y, LIU S Y, et al. The microscopic mechanisms of treating collapsible loess with vibratory probe compaction method[J]. Transportation Geotechnics, 2021, 27: 100492. doi: 10.1016/j.trgeo.2020.100492
    [19]
    张延杰, 王旭, 梁庆国, 等. 湿陷性黄土模型试验相似材料的研制[J]. 岩石力学与工程学报, 2013, 32(增刊 2): 4019-4024.

    ZHANG Yanjie, WANG Xu, LIANG Qingguo, et al. Development of model test similar material of collapsible loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 4019-4024. (in Chinese)
    [20]
    柴少峰, 王平, 郭海涛, 等. 大型振动台试验土质边坡模型材料相似性及评价[J]. 地震工程学报, 2019, 41(5): 1308-1315. doi: 10.3969/j.issn.1000-0844.2019.05.1308

    CHAI Shaofeng, WANG Ping, GUO Haitao, et al. Model material similarity and associated evaluation for soil slopes in a large-scale shaking table test[J]. China Earthquake Engineering Journal, 2019, 41(5): 1308-1315. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.05.1308
    [21]
    水谷裕. 钢管桩振动下沉计算[M]. 东京: 日本建设机械调查株式会社, 1966.

    MIZUTANI Y. Calculation of Vibration Subsidence of Steel Pipe Pile[M]. Tokyo: Hitachi Construction Machinery Co., Ltd., 1966. (in Chinese)
    [22]
    章定文, 刘松玉, 顾沉颖, 等. 土体气压劈裂的室内模型试验[J]. 岩土工程学报, 2009, 31(12): 1925-1929. doi: 10.3321/j.issn:1000-4548.2009.12.019

    ZHANG Dingwen, LIU Songyu, GU Chenying, et al. Model tests on pneumatic fracturing in soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1925-1929. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.12.019
    [23]
    MURDOCH L C, SLACK W W. Forms of hydraulic fractures in shallow fine-grained formations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6): 479-487. doi: 10.1061/(ASCE)1090-0241(2002)128:6(479)
    [24]
    ATHINA G, ADDA A, RICHARD D W. Ground vibration measurements near impact pile driving[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 04016035.
    [25]
    邵帅, 邵生俊, 陈攀, 等. 循环扭剪作用下黄土的动剪切特性试验研究[J]. 岩土工程学报, 2020, 42(1): 168-174. doi: 10.11779/CJGE202001019

    SHAO Shuai, SHAO Shengjun, CHEN Pan, et al. Experimental study on dynamic shear characteristics of loess under cyclic torsional shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 168-174. (in Chinese) doi: 10.11779/CJGE202001019
    [26]
    WOODS R D, JEDELE L P. Energy-attenuation relationships from construction vibrations[C]// Proc Symposium on Vibration Problems in Geotechnical Engineering. Detroit, 1985.
    [27]
    GUTOWSKI T G, DYM C L. Propagation of ground vibration: a review[J]. Journal of Sound and Vibration, 1976, 49(2): 179-193. doi: 10.1016/0022-460X(76)90495-8
  • Cited by

    Periodical cited type(5)

    1. 曾辉. 大断面隧道掘进施工下稳定性数值模拟研究. 佳木斯大学学报(自然科学版). 2025(04): 112-115 .
    2. 叶友林,商诗健,牛奔,路志旺,徐春一. 正交下穿截污管盾构开挖面被动失稳颗粒流模拟研究. 沈阳建筑大学学报(自然科学版). 2024(01): 70-77 .
    3. 陈一凡,沈翔,陈湘生. 海底软弱地层浅埋大直径盾构对接开挖面失稳灾变机制研究. 隧道建设(中英文). 2024(04): 712-723 .
    4. 谢强,马瑗婕,吴俊,薛孝强,涂正楠. 基坑开挖引起下穿交叉隧道变形效应分析. 地下空间与工程学报. 2024(05): 1695-1705 .
    5. 叶友林,刘晓龙,牛奔,周广宇,徐春一. 上软下硬复合地层盾构隧道开挖面稳定性分析. 沈阳工业大学学报. 2024(06): 848-854 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return