• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHENG Shufan, ZENG Yawu, GAO Rui, ZHANG Jiafan, QIN Xiangrui. Finite-discrete element model for slip debonding of cement anchors in clay rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2594-2603. DOI: 10.11779/CJGE20221269
Citation: CHENG Shufan, ZENG Yawu, GAO Rui, ZHANG Jiafan, QIN Xiangrui. Finite-discrete element model for slip debonding of cement anchors in clay rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2594-2603. DOI: 10.11779/CJGE20221269

Finite-discrete element model for slip debonding of cement anchors in clay rock

More Information
  • Received Date: October 16, 2022
  • Available Online: March 13, 2023
  • The bond between an anchor and the surrounding rock is the key factor to ensure the effectiveness of the anchorage system. To study the pull-resistance capacity of cement anchor in clay rock and the debonding mechanism of the interface under pull loads, the triaxial tests on clay rock, the direct shear tests on clay rock-cement mortar (C-C) interface, and the physical model for cement anchor pull-resistance tests are carried out. Based on the finite discrete element method (FDEM), the model for C-C binary is established, and the drawing process of cement anchor is numerically simulated. The researches show that the cohesion of clay rock is less than the tangential bond strength of the C-C interface. The internal tangent of friction angle of clay rock is larger than the friction coefficient of the C-C interface. Therefore, the shear failure of the binary gradually changes from the shear failure of clay rock to the shear debonding of the interface with the increase of the normal pressure. The bilinear cohesive model is available to simulate the failure of clay rock. The bonding interface of the binary is more suitable to be simulated by the bonding-friction model rather than the bilinear cohesive model. The failure process of cement anchor can be divided into four stages: bonding deformation stage, interface debonding stage, shear dilatancy & bite stage, and slip stage. In addition to the interface debonding, the shear failure of clay rock near the anchor is also an important factor leading to anchor failure. The bite force at the shear dilatancy stage determines the peak pull-resistance capacity of the anchor. The research results may play a guiding role in the design of anchorage structures in soft rock areas.
  • [1]
    程良奎, 张培文, 王帆. 岩土锚固工程的若干力学概念问题[J]. 岩石力学与工程学报, 2015, 34(4): 668-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504003.htm

    CHENG Liangkui, ZHANG Peiwen, WANG Fan. Several mechanical concepts for anchored structures in rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 668-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504003.htm
    [2]
    邬爱清, 韩军, 罗超文, 等. 单孔复合型锚杆锚固体应力分布特征研究[J]. 岩石力学与工程学报, 2004, 23(2): 247-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402013.htm

    WU Aiqing, HAN Jun, LUO Chaowen, et al. Research on stress distribution along bolts with single borehole and multiple anchors[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 247-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402013.htm
    [3]
    段建, 言志信, 郭锐剑, 等. 土层锚杆拉拔界面松动破坏分析[J]. 岩土工程学报, 2012, 34(5): 936-941. http://www.cgejournal.com/cn/article/id/14587

    DUAN Jian, YAN Zhixin, GUO Ruijian, et al. Failure analysis of soil anchors induced by loose interface under pullout load[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 936-941. (in Chinese) http://www.cgejournal.com/cn/article/id/14587
    [4]
    OZTURK H, TANNANT D D. Influence of rock properties and environmental conditions on thin spray-on liner adhesive bond[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7): 1196-1198. doi: 10.1016/j.ijrmms.2011.06.006
    [5]
    KROUNIS A, JOHANSSON F, LARSSON S. Shear strength of partially bonded concrete-rock interfaces for application in dam stability analyses[J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2711-2722. doi: 10.1007/s00603-016-0962-8
    [6]
    MALMGREN L, NORDLUND E, ROLUND S. Adhesion strength and shrinkage of shotcrete[J]. Tunnelling and Underground Space Technology, 2005, 20(1): 33-48. doi: 10.1016/j.tust.2004.05.002
    [7]
    SHEN Y J, WANG Y Z, YANG Y, et al. Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface[J]. Construction and Building Materials, 2019, 213: 156-166. doi: 10.1016/j.conbuildmat.2019.04.078
    [8]
    DONG W, YANG D, ZHANG B, et al. Rock-concrete interfacial crack propagation under mixed mode Ⅰ-Ⅱ fracture[J]. Journal of Engineering Mechanics, 2018, 144(6): 1943-7889.
    [9]
    DONG W, WU Z M, ZHANG B S, et al. Study on shear-softening constitutive law of rock-concrete interface[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4677-4694. doi: 10.1007/s00603-021-02536-6
    [10]
    KıLıC A, YASAR E, CELIK A G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J]. Tunnelling and Underground Space Technology, 2002, 17(4): 355-362. doi: 10.1016/S0886-7798(02)00038-X
    [11]
    尤春安. 全长黏结式锚杆的受力分析[J]. 岩石力学与工程学报, 2000, 19(3): 339-341. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX202321018.htm

    YOU Chunan. Mechanical analysis on wholly grouted anchor[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 339-341. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX202321018.htm
    [12]
    尤春安, 战玉宝, 刘秋媛. 预应力锚索锚固段的剪滞-脱黏模型[J]. 岩石力学与工程学报, 2013, 32(4): 800-806. doi: 10.3969/j.issn.1000-6915.2013.04.019

    YOU Chunan, ZHAN Yubao, LIU Qiuyuan. Shear lag-debonding model for anchorage section of prestressed anchor cable[J] Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 800-806. (in Chinese) doi: 10.3969/j.issn.1000-6915.2013.04.019
    [13]
    陈昌富, 杜成, 朱世民, 等. 红黏土土层锚杆界面剪切应力松弛试验及其模型[J]. 岩土力学, 2021, 42(5): 1201-1209. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105002.htm

    CHEN Changfu, DU Cheng, ZHU Shimin, et al. Experimental study and model of interface shear stress relaxation behavior of anchors in red clay[J]. Rock and Soil Mechanics, 2021, 42(5): 1201-1209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105002.htm
    [14]
    陈昌富, 梁冠亭, 汤宇, 等. 锚杆锚固体与土体界面特性室内测试新方法[J]. 岩土工程学报, 2015, 37(6): 1115-1122. doi: 10.11779/CJGE201506018

    CHEN Changfu, LIANG Guanting, TANG Yu, et al. Anchoring solid-soil interface behavior using a novel laboratory testing technique[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1115-1122. (in Chinese) doi: 10.11779/CJGE201506018
    [15]
    TIAN H M, CHEN W Z, YANG D S, et al. Experimental and numerical analysis of the shear behaviour of cemented concrete-rock joints[J]. Rock Mechanics and Rock Engineering, 2015, 48(1): 213-222. doi: 10.1007/s00603-014-0560-6
    [16]
    DONG W, WU Z, ZHOU X. Fracture mechanisms of rock-concrete interface: experimental and numerical[J]. Journal of Engineering Mechanics. 2016, 142(7): 04016040.
    [17]
    TATONE B, LISJAK A, MAHABADI O, et al. Verification of the implementation of rock-reinforcement elements in numerical analyses based on the hybrid combined finite-discrete element method (FDEM)[C]// Proceedings of the US Rock Mechanics / Geomechanics Symposium. San Francisco, 2015.
    [18]
    TATONE B, LISJAK A, MAHABADI O, et al. Incorporating rock reinforcement elements into numerical analyses based on the hybrid finite-discrete element method (FDEM) [C]//Proceedings of the 13th ISRM Congress. Montreal, 2015.
    [19]
    刘泉声, 邓鹏海, 毕晨, 等. 深部巷道软弱围岩破裂碎胀过程及锚喷-注浆加固FDEM数值模拟[J]. 岩土力学, 2019, 40(10): 4065-4083. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910043.htm

    LIU Quansheng, DENG Penghai, BI Chen, et al. FDEM numerical simulation of the fracture and extraction process of soft surrounding rock mass and its rockbolt-shotcrete-grouting reinforcement methods in the deep tunnel[J]. Rock and Soil Mechanics, 2019, 40(10): 4065-4083. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910043.htm
    [20]
    MUNJIZA A. The combined finite-discrete element method[M]. London: John Wiley & Sons, Ltd., 2004.
    [21]
    YE Y, MA J W, WU Z J, et al. A novel 3D-FDEM method using finite-thickness cohesive elements to simulate the nonlinear mechanical behaviors of rocks[J]. Computers and Geotechnics, 2021, 140: 104478.
    [22]
    WU Z J, ZHANG P L, FAN L F, et al. Numerical study of the effect of confining pressure on the rock breakage efficiency and fragment size distribution of a TBM cutter using a coupled FEM-DEM method[J]. Tunnelling and Underground Space Technology, 2019, 88: 260-275.
    [23]
    WU Z J, MA L L, FAN L F. Investigation of the characteristics of rock fracture process zone using coupled FEM/DEM method[J]. Engineering Fracture Mechanics, 2018, 200: 355-374.
    [24]
    LIU Q S, DENG P H. A numerical investigation of element size and loading/unloading rate for intact rock in laboratory-scale and field-scale based on the combined finite-discrete element method[J]. Engineering Fracture Mechanics, 2019, 211: 442-462.

Catalog

    Article views (315) PDF downloads (120) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return