• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Min, CHEN Xiangsheng, XIA Changqing, WANG Chen, BAO Xiaohua. Resilience evolution of shield tunnel structures under ground surcharge[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 35-44. DOI: 10.11779/CJGE20221258
Citation: ZHU Min, CHEN Xiangsheng, XIA Changqing, WANG Chen, BAO Xiaohua. Resilience evolution of shield tunnel structures under ground surcharge[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 35-44. DOI: 10.11779/CJGE20221258

Resilience evolution of shield tunnel structures under ground surcharge

More Information
  • Received Date: October 11, 2022
  • Available Online: January 08, 2024
  • The proposition and development of the resilience theory provide a new way for the performance evaluation of shield tunnel structures. On the basis of the proposed lining performance index considering the maximum historical deformation, a refined 3D finite element model including segments, joints, and nonlinear soil springs is established. The structural response and resilience evolution of shield tunnels with different buried depths under surcharge and unloading are studied. The results show that under the ground surcharge, the inner surfaces at the arch crown and arch bottom, as well as the outer surface at the arch waist, are tensioned. Affected by staggered joints, the structural internal force and damage are more concentrated in the segment of the central ring adjacent to the longitudinal joint of the side ring. At the unloading stage, the horizontal convergence of the tunnel decreases, and the residual deformation after complete unloading increases with the increase of the surcharge. Under the same horizontal convergence, the deformation recovery rate of the shallow burial tunnels after unloading is greater. The resilience of the tunnel structures decreases quickly with the increase in the horizontal tunnel convergence, and shortening response time and improving the efficiency of repair measures can help enhance the resilience of the tunnel structures. While the resilience of the tunnel structures is divided into four levels, more efficient, rapid and comprehensive repair measures should be adopted to avoid the secondary damage to the structures when entering the extremely low resilience stage.
  • [1]
    邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043. doi: 10.11779/CJGE201606009

    SHAO Hua, HUANG Hongwei, ZHANG Dongming, et al. Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1036-1043. (in Chinese) doi: 10.11779/CJGE201606009
    [2]
    朱旻, 陈湘生, 王雪涛. 盾构隧道衬砌结构性能演化分析与思考[J]. 工程力学, 2022, 39(3): 33-50.

    ZHU Min, CHEN Xiangsheng, WANG Xuetao. Analysis and thinking on structural performance evolution of shield tunnel lining[J]. Engineering Mechanics, 2022, 39(3): 33-50. (in Chinese)
    [3]
    梁荣柱, 曹世安, 向黎明, 等. 地表堆载作用下盾构隧道纵向受力机制试验研究[J]. 岩石力学与工程学报, 2023, 42(3): 736-747.

    LIANG Rongzhu, CAO Shian, XIANG Liming, et al. Experimental investigation on longitudinal mechanical mechanism of shield tunnels subjected to ground surface surcharge[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 736-747. (in Chinese)
    [4]
    王如路, 张冬梅. 超载作用下软土盾构隧道横向变形机理及控制指标研究[J]. 岩土工程学报, 2013, 35(6): 1092-1101. http://cge.nhri.cn/cn/article/id/15080

    WANG Rulu, ZHANG Dongmei. Mechanism of transverse deformation and assessment index for shield tunnels in soft clay under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1092-1101. (in Chinese) http://cge.nhri.cn/cn/article/id/15080
    [5]
    LI X J, LIN X D, ZHU H H, et al. Condition assessment of shield tunnel using a new indicator: the tunnel serviceability index[J]. Tunnelling and Underground Space Technology, 2017, 67: 98-106. doi: 10.1016/j.tust.2017.05.007
    [6]
    CHEN X Q, LI X J, ZHU H H. Condition evaluation of urban metro shield tunnels in Shanghai through multiple indicators multiple causes model combined with multiple regression method[J]. Tunnelling and Underground Space Technology, 2019, 85: 170-181. doi: 10.1016/j.tust.2018.11.044
    [7]
    SHADABFAR M, MAHSULI M, ZHANG Y, et al. Resilience-based design of infrastructure: review of models, methodologies, and computational tools[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8(1): 03121004. doi: 10.1061/AJRUA6.0001184
    [8]
    HUANG H W, ZHANG D M. Resilience analysis of shield tunnel lining under extreme surcharge: characterization and field application[J]. Tunnelling and Underground Space Technology, 2016, 51: 301-312. doi: 10.1016/j.tust.2015.10.044
    [9]
    林星涛, 陈湘生, 苏栋, 等. 考虑多次扰动影响的盾构隧道结构韧性评估方法及其应用[J]. 岩土工程学报, 2022, 44(4): 591-601. doi: 10.11779/CJGE202204001

    LIN Xingtao, CHEN Xiangsheng, SU Dong, et al. Evaluation method for resilience of shield tunnel linings considering multiple disturbances and its application[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 591-601. (in Chinese) doi: 10.11779/CJGE202204001
    [10]
    LIN X T, CHEN X S, SU D, et al. An analytical model to evaluate the resilience of shield tunnel linings considering multistage disturbances and recoveries[J]. Tunnelling and Underground Space Technology, 2022, 127: 104581. doi: 10.1016/j.tust.2022.104581
    [11]
    ZHANG Y J, SAADAT Y, HUANG H W, et al. Experimental study on deformational resilience of longitudinal joint in shield tunnel lining[J]. Structure and Infrastructure Engineering, 2022: 1-12.
    [12]
    城市轨道交通结构安全保护技术规范: CJJ/T 202—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Technical Code for Protection Structures of Urban Rail Transit: CJJ/T 202—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [13]
    LIU X, ZHANG Y M, BAO Y H. Full-scale experimental investigation on stagger effect of segmental tunnel linings[J]. Tunnelling and Underground Space Technology, 2020, 102: 103423. doi: 10.1016/j.tust.2020.103423
    [14]
    混凝土结构设计规范: GB50010—2010[S]. 2015.

    Code for Design of Concrete Structures: GB50010—2010[S]. 2015. (in Chinese)
    [15]
    SU D, CHEN W J, WANG X T, et al. Numerical study on transverse deformation characteristics of shield tunnel subject to local soil loosening[J]. Underground Space, 2022, 7(1): 106-121. doi: 10.1016/j.undsp.2021.07.001
    [16]
    刘钊. 复杂工况条件下错缝拼装盾构管片变形性能试验与仿真分析研究[D]. 北京: 中国铁道科学研究院, 2017.

    LIU Zhao. Shield Segment Deformation Performance Test and Simulation Analysis under Complicated Working Condition[D]. Beijing: China Academy of Railway Sciences, 2017. (in Chinese)
    [17]
    郑光辉, 庞小朝, 王康任. 基于整环足尺试验的盾构隧道破坏机制及纵缝外弧面变形分析[J]. 隧道建设(中英文), 2021, 41(S2): 165-171.

    ZHENG Guanghui, PANG Xiaochao, WANG Kangren. Failure mechanism of shield tunnel based on full-scale experiment and analysis of longitudinal joint's outboard deformation[J]. Tunnel Construction, 2021, 41(S2): 165-171. (in Chinese)
    [18]
    王康任, 庞小朝, 刘树亚, 等. 复杂荷载条件下错缝拼装盾构隧道受力性能及结构安全指标研究[J]. 现代隧道技术, 2018, 55(增刊2): 588-598.

    WANG Kangren, PANG Xiaochao, LIU Shuya, et al. Study on mechanical performances and structural safety index of stagger-jointed shield tunnel under complex load conditions[J]. Modern Tunnelling Technology, 2018, 55(S2): 588-598. (in Chinese)
    [19]
    魏纲, 洪文强, 魏新江, 等. 偏心堆载引起的盾构隧道横向受力理论计算[J]. 中南大学学报(自然科学版), 2019, 50(7): 1645-1654.

    WEI Gang, HONG Wenqiang, WEI Xinjiang, et al. Theoretical calculations of transverse force on shield tunnel caused by eccentric load[J]. Journal of Central South University (Science and Technology), 2019, 50(7): 1645-1654. (in Chinese)
    [20]
    GAO X, WANG H N, JIANG M J. Analytical solutions for the displacement and stress of lined circular tunnel subjected to surcharge loadings in semi-infinite ground[J]. Applied Mathematical Modelling, 2021, 89: 771-791. doi: 10.1016/j.apm.2020.07.061
    [21]
    王洪新, 李雪强, 杨石飞, 等. 应用于基坑围护结构变形计算的非线性土体弹簧模型及参数研究[J]. 岩土工程学报, 2020, 42(6): 1032-1040. doi: 10.11779/CJGE202006006

    WANG Hongxin, LI Xueqiang, YANG Shifei, et al. Nonlinear soil spring model and parameters for calculating deformation of enclosure structure of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1032-1040. (in Chinese) doi: 10.11779/CJGE202006006

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return