Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YUAN Xiaoming, LU Kunyu, LI Zhaoyan, CHEN Zhoushi, WU Xiaoyang. Characteristic functions of regional soils: convergence[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 26-34. DOI: 10.11779/CJGE20221254
Citation: YUAN Xiaoming, LU Kunyu, LI Zhaoyan, CHEN Zhoushi, WU Xiaoyang. Characteristic functions of regional soils: convergence[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 26-34. DOI: 10.11779/CJGE20221254

Characteristic functions of regional soils: convergence

More Information
  • Received Date: October 10, 2022
  • Available Online: March 19, 2023
  • Whether from the perspective of engineering application of establishing N - vs relationship curve in a region or as an essential part of regional soil characteristic theory, the number of arrays required for constructing scientific N - vs function is an important problem, but this issue has not been involved before. The stability and convergence of N - vs characteristic functions under different sample numbers are studied by using the random analysis of measured data, and the array thresholds for constructing N - vs characteristic functions with different precisions are proposed. The measured data come from 9 regions in four countries, and there are 11 working conditions in total. The results of random analysis show that the N - vs characteristic function is stable and convergent with the increase of the number of samples. The research shows that if the N - vs array exceeds 50, 100, 200 and 800 in a region, the N - vs characteristic functions with coefficients of variation less than 0.2, 0.15, 0.10 and 0.05 can be obtained respectively.
  • [1]
    KANAI K. Conference on cone penetrometer[R]. Ankara: The Ministry of Public Works and Settlement, 1966.
    [2]
    HANUMANTHARAO C, RAMANA G V. Dynamic soil properties for microzonation of Delhi, India[J]. Journal of Earth System Science, 2008, 117(2): 719-730.
    [3]
    DIKMEN Ü. Statistical correlations of shear wave velocity and penetration resistance for soils[J]. Journal of Geophysics and Engineering, 2009, 6(1): 61-72. doi: 10.1088/1742-2132/6/1/007
    [4]
    王梦龙. 国家标准液化判别方法区域化修正初探[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.

    WANG Menglong. Preliminary Study on Regional Method of National Standard of Liquefaction Discrimination Formula[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2016. (in Chinese)
    [5]
    UMA MAHESWARI R, BOOMINATHAN A, DODAGOUDAR G R. Use of surface waves in statistical correlations of shear wave velocity and penetration resistance of Chennai soils[J]. Geotechnical and Geological Engineering, 2010, 28(2): 119-137. doi: 10.1007/s10706-009-9285-9
    [6]
    KUMAR A, HARINARAYAN N H, VERMA V, et al. Seismic site classification and empirical correlation between standard penetration test N value and shear wave velocity for guwahati based on thorough subsoil investigation data[J]. Pure and Applied Geophysics, 2018, 175(8): 2721-2738. doi: 10.1007/s00024-018-1858-1
    [7]
    袁晓铭, 卢坤玉, 林颖, 等. 哈尔滨地区砂土层N-V关系特征曲线及对比研究[J]. 地震工程与工程振动, 2020, 40(6): 1-15.

    YUAN Xiaoming, LU Kunyu, LIN Ying, et al. The N-V relationship curve of sand layers in Harbin region and its comparison with those in other regions of China[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(6): 1-15. (in Chinese)
    [8]
    ANBAZHAGAN P, KUMAR A, SITHARAM T G. Seismic site classification and correlation between standard penetration test N value and shear wave velocity for Lucknow city in indo-gangetic basin[J]. Pure and Applied Geophysics, 2013, 170(3): 299-318. doi: 10.1007/s00024-012-0525-1
    [9]
    RAHIMI S, WOOD C M, WOTHERSPOON L M. Influence of soil aging on SPT - vs correlation and seismic site classification[J]. Engineering Geology, 2020, 272: 105653. doi: 10.1016/j.enggeo.2020.105653
    [10]
    XIAO S H, ZHANG J, YE J M, et al. Establishing region-specific N - vs relationships through hierarchical Bayesian modeling[J]. Engineering Geology, 2021, 287: 106105. doi: 10.1016/j.enggeo.2021.106105
    [11]
    袁晓铭, 卢坤玉, 汪云龙, 等. 区域土特征函数: 概念与原理[J]. 岩土工程学报, 2023, 45(12): 2429-2437. doi: 10.11779/CJGE20220828

    YUAN Xiaoming, LU Kunyu, WANG Yunlong, et al. Characteristic functions of regional soils: concepts and principles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2429-2437. (in Chinese) doi: 10.11779/CJGE20220828
    [12]
    周镜. 岩土工程中的几个问题[J]. 岩土工程学报, 1999, 21(1): 2-8. http://cge.nhri.cn/cn/article/id/10244

    ZHOU Jing. Some cases in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 2-8. (in Chinese) http://cge.nhri.cn/cn/article/id/10244
    [13]
    龚晓南. 21世纪岩土工程发展展望[J]. 岩土工程学报, 2000, 22(2): 238-242. http://cge.nhri.cn/cn/article/id/10487

    GONG Xiaonan. Prospects for the development of geotechnical engineering in the 21th century[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 238-242. (in Chinese) http://cge.nhri.cn/cn/article/id/10487
    [14]
    FABBROCINO S, LANZANO G, FORTE G, et al. SPT blow count vs. shear wave velocity relationship in the structurally complex formations of the Molise Region (Italy)[J]. Engineering Geology, 2015, 187: 84-97. doi: 10.1016/j.enggeo.2014.12.016
    [15]
    THAKER T, RAO K S. Development of statistical correlations between shear wave velocity and penetration resistance using MASW technique[R]. Toronto: 2011 Pan-Am CGS Geotechnical Conference, 2011.
    [16]
    TSIAMBAOS G, SABATAKAKIS N. Empirical estimation of shear wave velocity from in situ tests on soil formations in Greece[J]. Bulletin of Engineering Geology and the Environment, 2011, 70(2): 291-297. doi: 10.1007/s10064-010-0324-9
  • Cited by

    Periodical cited type(14)

    1. 刘小锐,张晗. 盾构隧道下穿施工对严重倾斜挡墙影响及加固措施分析. 粉煤灰综合利用. 2025(01): 145-149 .
    2. 余鹏. 盾构隧道穿越在建PBA车站风险控制技术研究. 铁道标准设计. 2025(04): 148-156 .
    3. 马昭,张明礼,段旭晗,赵博. 大断面浅埋隧道地表沉降Peck修正公式及其应用. 长江科学院院报. 2024(03): 118-125 .
    4. 陈湘生,全昭熹,陈一凡,沈翔,苏栋. 极端环境隧道建造面临的主要问题及发展趋势. 隧道建设(中英文). 2024(03): 401-432 .
    5. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 .
    6. 刘彦良. 水下大直径盾构下穿施工对防汛大堤影响研究. 建筑机械. 2024(07): 142-146 .
    7. 黄震,黄侦谦,侯东祥,尤伟军,管世玉. 盾构掘进对浅基础建筑物的扰动及影响分区研究. 科技通报. 2024(07): 97-106 .
    8. 高泉平,杨硕,芮瑞,张泉,聂利文,孙天健. 邻近挡土结构隧道开挖引起地层变形的试验研究. 武汉理工大学学报. 2023(09): 75-82 .
    9. 张恒旭. 某过江隧道江心洲防洪大堤开挖对周围环境的影响分析. 工程技术研究. 2022(09): 13-17 .
    10. 王智德,武海港,杨文东,李杰,李根,刘奇. 地铁隧道近距离侧穿邻近桩基影响的试验研究. 武汉理工大学学报. 2022(06): 69-77 .
    11. 王长虹,马铖涛,吴昭欣,王昆,汤道飞. CPTU数据校准黏土和砂土统一模型本构参数的随机力学-贝叶斯方法. 土木工程学报. 2022(10): 101-116 .
    12. 董立波. 上软下硬复合地层中盾构下穿既有建筑物受力性能研究. 智能城市. 2021(04): 15-16 .
    13. 芮瑞,翟玉新,徐杨青,何清. 邻近地层损失对地下挡土结构土压力与地表沉降影响试验研究. 岩土工程学报. 2021(04): 644-652 . 本站查看
    14. 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用. 地球科学进展. 2020(10): 1087-1098 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return