• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Chuan-yang, WU Yue-dong, LIU Jian, LIU Hui, CHEN Da-shuo, LIN Lai-he. Influences of calcareous nodule content on scale effects of compressibility of cohesive soil containing calcareous nodules[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2272-2279. DOI: 10.11779/CJGE202212014
Citation: LIANG Chuan-yang, WU Yue-dong, LIU Jian, LIU Hui, CHEN Da-shuo, LIN Lai-he. Influences of calcareous nodule content on scale effects of compressibility of cohesive soil containing calcareous nodules[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2272-2279. DOI: 10.11779/CJGE202212014

Influences of calcareous nodule content on scale effects of compressibility of cohesive soil containing calcareous nodules

More Information
  • Received Date: December 24, 2020
  • Available Online: December 13, 2022
  • The samples of cohesive soil containing calcareous nodules (CSCN) with large and corresponding scale sizes have scale effects on the physical and mechanical properties such as compressibility, which are mainly affected by the calcareous nodule content (CNC) and the gradation composition. However, the current researches pay more attention to the influences of the gradation composition on the scale effects, while ignoring those of the CNC. The influences of the CNC on the scale effects of compressibility of the CSCN are discussed, and the relevant mechanism is revealed. The results show that the correlation between the scale effects of compressibility and the CNC is a step curve, which is mainly due to the fact that the calcareous nodules in the samples with the scale size are easier to form the skeleton effects under the same CNC. Based on this, considering the skeleton effects of calcareous nodules, a model for calculating the yield stress and compression index of samples is proposed to reduce the scale effects of samples. The proposed model may provide a new approach to obtain the compressibility parameters of samples with a large size by using the compression test results of samples with the corresponding scale size, which is reliable.
  • [1]
    JI B, WU D X. GIS-based quantitative analysis for mesostructure of cohesive soil containing calcareous nodules[J]. Advanced Materials Research, 2014(860/861/862/863): 1284–1288.
    [2]
    WANG X Z, WANG X, JIN Z C, et al. Shear characteristics of calcareous gravelly soil[J]. Bulletin of Engineering Geology & the Environment, 2017, 76(2): 561–573.
    [3]
    DELGADO A R, JOSÉ R, DEL C M D C, et al. Calcium- and iron-related phosphorus in calcareous and calcareous marsh soils: sequential chemical fractionation and 31 p nuclear magnetic resonance study[J]. Communications in Soil Science & Plant Analysis, 2000, 31(15/16): 2483–2499.
    [4]
    INGLETT P W, INGLETT K S. Biogeochemical changes during early development of restored calcareous wetland soils[J]. Geoderma, 2013, 192(1): 132–141.
    [5]
    吴道祥, 曹亚娟, 钟轩民, 等. 安徽淮北平原钙质结核土分布及成因年代研究[J]. 岩土力学, 2009, 30(增刊2): 434–439. doi: 10.16285/j.rsm.2009.s2.006

    WU Dao-xiang, CAO Ya-juan, ZHONG Xuan-min, et al. Study on distribution and genetic age of cohesive soil containing calcareous nodules in Huaibei Plain of Anhui Province[J]. Rock and Soil Mechanics, 2009, 30(S2): 434–439. (in Chinese) doi: 10.16285/j.rsm.2009.s2.006
    [6]
    GOUGH R E. Calcareous soil[J]. Glossary of Vital Terms for the Home Gardener, 1993: 123–131.
    [7]
    何礼秋, 禹峰, 仝其波. 钙质结核土工程地质特性试验方法研究[J]. 工程与建设, 2015, 29(4): 522–524. https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201504037.htm

    HE Li-qiu, YU Feng, TONG Qi-bo. Study on test method of engineering geological characteristics of cohesive soil containing calcareous nodules[J]. Engineering and Construction, 2015, 29(4): 522–524. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201504037.htm
    [8]
    郦能惠, 朱铁, 米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19(2): 39–42. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY200102011.htm

    LI Neng-hui, ZHU Tie, MI Zhan-kuan. Strength and deformation properties of transition zone material of Xiaolangdi Dam and scale effect[J]. Hydroelectric Energy, 2001, 19(2): 39–42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY200102011.htm
    [9]
    陆会青. 关于粗粒土原级配大型固结试验的几点体会[J]. 大坝观测与土工测试, 1994, 18(6): 42–45. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC406.007.htm

    LU Hui-qing. Some experience on large-scale consolidation test of original gradation of coarse grained soil[J]. Dam Observation and Geotechnical Tests, 1994, 18(6): 42–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC406.007.htm
    [10]
    赵娜, 左永振, 王占彬, 等. 基于分形理论的粗粒料级配缩尺方法研究[J]. 岩土力学, 2016, 37(12): 3513–3519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612021.htm

    ZHAO Na, ZUO Yong-zhen, WANG Zhan-bin, et al. Grading scale method for coarse-grained soils based on fractal theory[J]. Rock and Soil Mechanics, 2016, 37(12): 3513–3519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612021.htm
    [11]
    XU W J, ZHANG H Y. Research on the effect of rock content and sample size on the strength behavior of soil-rock mixture[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(3): 2715–2726. doi: 10.1007/s10064-020-02050-z
    [12]
    翁厚洋. 粗粒料缩尺效应试验研究[D]. 南京: 河海大学, 2008.

    WENG Hou-yang. Experimental Study on Scale Effect of Coarse Aggregate[D]. Nanjing: Hohai University, 2008. (in Chinese)
    [13]
    蓝天鹏, 吴道祥, 杨远杰, 等. 钙质结核土及其大型直剪试验研究[J]. 合肥工业大学学报(自然科学版), 2012, 35(2): 257–261. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201202026.htm

    LAN Tian-peng, WU Dao-xiang, YANG Yuan-jie, et al. Research on cohesive soil containing calcareous nodule and its large direct shear test[J]. Journal of Hefei University of Technology (Natural Science), 2012, 35(2): 257–261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201202026.htm
    [14]
    吴二鲁, 朱俊高, 郭万里, 等. 缩尺效应对粗粒料压实密度影响的试验研究[J]. 岩土工程学报, 2019, 41(9): 1767–1772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909026.htm

    WU Er-lu, ZHU Jun-gao, GUO Wan-li, et al. Experimental study on effect of scaling on compact density of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1767–1772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909026.htm
    [15]
    MARSCHI N D, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(1): 95–114.
    [16]
    花俊杰, 周伟, 常晓林, 等. 堆石体应力变形的尺寸效应研究[J]. 岩石力学与工程学报, 2010, 29(2): 328–335. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002016.htm

    HUA Jun-jie, ZHOU Wei, CHANG Xiao-lin, et al. Study of scale effect on stress and deformation of rockfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 328–335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002016.htm
    [17]
    ZHU J G, GUO W L, WEN Y F, et al. New gradation equation and applicability for particle-size distributions of various soils[J]. International Journal of Geomechanics, 2018, 18(2): 04017155.
    [18]
    褚福永, 朱俊高, 翁厚洋, 等. 粗粒料级配缩尺后最大干密度试验研究[J]. 岩土力学, 2020, 41(5): 1599–1604. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005017.htm

    CHU Fu-yong, ZHU Jun-gao, WENG Hou-yang, et al. Experimental study on maximum dry density of scaled coarse-grained soil[J]. Rock and Soil Mechanics, 2020, 41(5): 1599–1604. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005017.htm
    [19]
    土工试验方法标准: GB/T 50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
    [20]
    土的工程分类标准: GB/T 50145—2007[S]. 2007.

    Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. 2007. (in Chinese)
    [21]
    BIAN X, WANG Z F, DING G Q, et al. Compressibility of cemented dredged clay at high water content with super-absorbent polymer[J]. Engineering Geology, 2016, 208: 198–05.
    [22]
    POPESCU M E. An introduction to geotechnical engineering[J]. Engineering Geology, 1986, 22(4): 377.
    [23]
    ZHANG Z P, SHENG Q, FU X D, et al. An approach to predicting the shear strength of soil-rock mixture based on rock block proportion[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2423–2437.
    [24]
    SHI C, YANG W K, YANG J X, et al. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter, 2019, 21(2): 1–13.
    [25]
    ALONSO E E, ROMERO E, HOFFMANN C. Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study[J]. Géotechnique, 2011, 61(4): 329–344.
    [26]
    杨贵, 刘汉龙, 陈育民, 等. 堆石料动力变形特性的尺寸效应研究[J]. 水力发电学报, 2009, 28(5): 121–126. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905023.htm

    YANG Gui, LIU Han-long, CHEN Yu-min, et al. Research on size effect of rock-fill materials on dynamic deformation property[J]. Journal of Hydroelectric Engineering, 2009, 28(5): 121–126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905023.htm
    [27]
    张慧杰. 钙质结核土细观结构要素电阻率试验研究[D]. 合肥: 合肥工业大学, 2018.

    ZHANG Hui-jie. Experimental Study on Resistivity of Mesoscopic Structural Elements of Cohesive Soil Containing Calcareous[D]. Hefei: Hefei University of Technology, 2018. (in Chinese)
  • Related Articles

    [1]ZHAO Meng, NIU Xinqiang, YAN Tianyou, XIAO Ming. Inverse analysis method for in-situ stress field of rock mass considering influences of characteristics of layered structure[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1239-1248. DOI: 10.11779/CJGE20240135
    [2]MA Xiaobin, WANG Shimin, LIU Chang, ZHONG Meiyun. Experimental study on influence of lateral pressure coefficient of soil strata on mechanical properties of double-layer lining structure in shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 725-735. DOI: 10.11779/CJGE20230909
    [3]GUO Dong, WANG Jian-hua, FAN Yi-fei. Soil pressures on pile shaft due to spudcan penetration in clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2061-2070. DOI: 10.11779/CJGE201911011
    [4]JIANG Ming-jie, LU Xiao-ping, ZHU Jun-gao, JI En-yue, GUO Wan-li. Method for estimating at-rest lateral pressure coefficient of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 77-81. DOI: 10.11779/CJGE2018S2016
    [5]ZHANG Chang-guang, ZHAO Jun-hai, FAN Wen, DAI Yan. Critical filling height of embankment on soft ground based on generalized SMP criterion[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1251-1257. DOI: 10.11779/CJGE201707011
    [6]LI Guo-wei, HU Jian, LU Xiao-cen, ZHOU Yang. One-dimensional secondary consolidation coefficient and lateral pressure coefficient of overconsolidated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2198-2205.
    [7]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [8]LIU Xue-zeng, YE Kang. Statistical analysis of surrounding rock pressure of mountain road tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 890.
    [9]TANG Shidong, Lv Jianchun, FU Zong. Solution to initial horizontal stress and lateral earth pressure coefficient at rest by flat dilatometer tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2144-2148.
    [10]LAI Hongpeng, XIE Yongli, YANG Xiaohua. Model test study on sectional form of highway tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 740-744.
  • Other Related Supplements

  • Cited by

    Periodical cited type(6)

    1. 王敬奎,乔丽苹,王菲,王者超,李崴. 海岛地下水封石油洞库海水入侵防控. 山东大学学报(工学版). 2025(02): 134-142 .
    2. 乔丽苹,王菲,王者超,李成. 地下水封石油洞库竖直水幕设计参数及其影响分析. 岩土工程学报. 2024(07): 1525-1533 . 本站查看
    3. 魏松源,李涵硕,彭振华,王者超,李崴. 某地下水封洞库竖直水幕试验分析与水幕系统有效性. 隧道与地下工程灾害防治. 2024(04): 81-89 .
    4. 曲建军,曹彪,宋大钊,杨连枝,何生全. 近海地下石油储备库海水入侵风险研究. 水文地质工程地质. 2023(06): 184-192 .
    5. 蒋中明,钟兵,万发. 水封石油洞库污染物运移规律研究. 岩土工程学报. 2023(12): 2529-2536 . 本站查看
    6. 王秀英. 海滨地区水文环境变化及衍生灾害研究现状分析. 中国石油大学胜利学院学报. 2021(02): 24-28 .

    Other cited types(1)

Catalog

    Article views (146) PDF downloads (23) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return